Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Hadamard-Bergman Convolution OperatorsPublication . Karapetyants, Alexey; Samko, StefanWe introduce a convolution form, in terms of integration over the unit disc D, for operators on functions f in H(D), which correspond to Taylor expansion multipliers. We demonstrate advantages of the introduced integral representation in the study of mapping properties of such operators. In particular, we prove the Young theorem for Bergman spaces in terms of integrability of the kernel of the convolution. This enables us to refer to the introduced convolutions as Hadamard-Bergman convolution. Another, more important, advantage is the study of mapping properties of a class of such operators in Holder type spaces of holomorphic functions, which in fact is hardly possible when the operator is defined just in terms of multipliers. Moreover, we show that for a class of fractional integral operators such a mapping between Holder spaces is onto. We pay a special attention to explicit integral representation of fractional integration and differentiation.
- Variable order fractional integrals in variable generalized Hölder spaces of holomorphic functionsPublication . Karapetyants, Alexey; Samko, StefanWe introduce and study the variable generalized Holder spaces of holomorphic functions over the unit disc in the complex plane. These spaces are defined either directly in terms of modulus of continuity or in terms of estimates of derivatives near the boundary. We provide conditions of Zygmund type for imbedding of the former into the latter and vice versa. We study mapping properties of variable order fractional integrals in the frameworks of such spaces.