Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Chemical characterization and biological properties assessment of Euphorbia resinifera and Euphorbia officinarum Moroccan PropolisPublication . Boutoub, Oumaima; El-Guendouz, Soukaina; Matos, Isabel; El Ghadraoui, Lahsen; Costa, Maria Clara; Carlier, Jorge; Faleiro, Maria Leonor; Figueiredo, Ana Cristina; Estevinho, Letícia M.; Miguel, MariaAlthough the plants of the genus Euphorbia are largely exploited by therapists in Morocco, the composition and antibacterial activities of propolis from these plants are still unknown. To address this gap, this study aimed to characterize the pollen type, the volatile compounds, and the phenolic and mineral profiles of three Euphorbia propolis samples collected in Morocco and evaluate their antimicrobial activities. The minimum inhibitory concentration of the propolis samples was determined by the microdilution method, and the anti-adherence activity was evaluated by the crystal violet assay. The examination of anti-quorum-sensing proprieties was performed using the biosensor Chromobacterium violaceum CV026. Pollen analysis revealed that Euphorbia resinifera pollen dominated in the P1 sample (58%), while E. officinarum pollen dominated in the P2 and P3 samples (44%). The volatile compounds were primarily composed of monoterpene hydrocarbons, constituting 35% in P1 and 31% in P2, with α-pinene being the major component in both cases, at 16% in P1 and 15% in P2. Calcium (Ca) was the predominant mineral element in both E. resinifera (P1) and E. officinarum (P2 and P3) propolis samples. Higher levels of phenols, flavonoids and dihydroflavonoids were detected in the E. officinarum P2 sample. The minimum inhibitory concentration (MIC) value ranged from 50 to 450 µL/mL against Gram-positive and Gram-negative bacteria. Euphorbia propolis displayed the ability to inhibit quorum sensing in the biosensor C. violaceum CV026 and disrupted bacterial biofilm formation, including that of resistant bacterial pathogens. In summary, the current study evidences the potential use of E. officinarum propolis (P2 and P3) to combat important features of resistant pathogenic bacteria, such as quorum sensing and biofilm formation.
- On the optimization of carob seed peel extraction using aqueous-based acidic systemsPublication . Medronho, Bruno; boutoub, Oumaima; Duarte, Hugo; Aliaño González, María José; Guerra, Rui; Brazio, António; Gonçalves, Sandra; Romano, AnabelaCarob fruit utilization remains limited, with most of their commercial value derived from locust bean gum, which is obtained from seed endosperm. Efficient extraction requires dehusking, which is traditionally performed under harsh conditions. This study aims to develop and optimize a milder, more sustainable dehusking method while preserving seed quality for industrial applications. Various aqueous-based solvents were tested, leading to the selection of metanesulfonic acid (CH4O3S). A Box-Behnken design with response surface methodology optimized the process, using husk removal efficiency as the response variable. The optimized conditions were 24.5 g of seeds treated in 50 mL of a solvent mixture (41% CH4O3S and 59% H2SO4) at 90 degrees C for 10 min, followed by washing by 5 min with water (87 mL). The treated seeds were analyzed using colorimetry assays and diffusive reflectance spectroscopy and benchmarked against both pristine and dehusked seeds from a local company. The resulting seeds remained morphologically intact and exhibited appealing color characteristics comparable to commercial samples. The optimized method ensured intact seed morphology and color characteristics comparable to commercial standards, offering a viable alternative to conventional H2SO4-based dehusking. Furthermore, this study also highlights for the first time the effectiveness of diffusive reflectance spectroscopy as a rapid and straightforward tool for assessing the dehusking process.