Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- New fluorescent probes based on gallium(III) corrole complexes for the recognition of hydrogen sulfide: a journey from solution to intracellular sitePublication . Santos, Carla I.M.; Santiago, Ana M.; Araújo, Ana R.L.; Pinto, Sandra; Agostinho, Rafaela; Simão, Sónia; Azevedo, Tomás Pais de; Antunes, Catarina; Faustino, M. Amparo F.; Araujo, Ines; Neves, M. Graça P.M.S.; Martinho, José M.G.; Maçôas, Ermelinda M.S.In this work, three fluorescent probes for detection of hydrogen sulfide (H2S) where prepared based on gallium (III) corrole complexes bearing nitro groups at beta-pyrrolic positions. Two of the compounds selected, the 3-nitro5,10,15- tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa-NO2) and the 3,17-dinitro-5,10,15-tris (pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa-2NO2) present one and two nitro groups directly linked to the beta-pyrrolic position. The third compound, the (E)-3-(2-nitroprop-1-en-1-yl)-5,10,15-tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa-EtNO2), has a carbon-carbon double bond spacer between the corrole unit and the nitro group. All these derivatives were obtained from 5,10,15-tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa). The precursor CGa and the derivative CGa-EtNO2 behaved as turn-OFF probes, while compound CGa-NO2 responded as a turn-ON probe in the presence of H2S in the pH range of 5-9. Mechanistic studies show that the interaction of H2S with the probes involves its coordination with gallium(III) and in some cases the reduction of the nitro group to a new aminated corrole. While the formation of the coordination complex with H2S is almost immediate, the kinetics of the reduction is slow. Interestingly, for CGaNO2 the two processes can be explored in a ratiometric sensing of H2S in a non-aqueous solution showing a good linearity over an extended concentration range (5-200 mu M). The response of the corroles to H2S in intracellular medium was studied in 2D cultured cells (HeLa).
- Human-derived NLS enhance the gene transfer efficiency of chitosanPublication . Bitoque, Diogo; Morais, Joana; Oliveira, Ana; Sequeira, Raquel L.; Calado, Sofia; Fortunato, Tiago M.; Simão, Sónia; Rosa Da Costa, Ana; Silva, Gabriela A.Nuclear import is considered as one of the major limitations for non-viral gene delivery systems and the incorporation of nuclear localization signals (NLS) that mediate nuclear intake can be used as a strategy to enhance internalization of exogenous DNA. In this work, human-derived endogenous NLS peptides based on insulin growth factor binding proteins (IGFBP), namely IGFBP-3 and IGFBP-5, were tested for their ability to improve nuclear translocation of genetic material by non-viral vectors. Several strategies were tested to determine their effect on chitosan mediated transfection efficiency: co-administration with polyplexes, co-complexation at the time of polyplex formation, and covalent ligation to chitosan. Our results show that co-complexation and covalent ligation of the NLS peptide derived from IGFBP-3 to chitosan polyplexes yields a 2-fold increase in transfection efficiency, which was not observed for NLS peptide derived from IGFBP-5. These results indicate that the integration of IGFBP-NLS-3 peptides into polyplexes has potential as a strategy to enhance the efficiency of non-viral vectors.