Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Green infrastructure, climate change and spatial planning: learning lessons across bordersPublication . Samora-Arvela, André; Ferrao, Joao; Ferreira, Jorge; Panagopoulos, Thomas; Vaz, EricClimate change will further induce a generalized rise in temperature, heat waves, exacerbation of heat island effect, alteration of the precipitation regime variability with higher occurrence of high precipitation and flood events, reduction of quantity and quality of freshwater resources, disruption of agricultural production, leading to food security risk, degradation of recreational and aesthetic amenities, and loss of biodiversity. On other hand, Green Infrastructure, that is, the network of natural and semi-natural spaces within and around urban spaces, brings a constructive and protecting element that may mitigate and adapt to the local level impacts of climate change, strengthening local resilience. This paper presents a comparative study of various green infrastructures' implementation based on analytics in the United States of America, United Kingdom and Portugal, and focuses on the degree of its alignment with the public policies of mitigation and adaptation to the impacts of climate change. Pursuant to the identification of successes and failures, this paper infers common strategies, goals and benchmarking on outcomes for more adequate decision implementation and sustainable spatial planning, considering the importance of green infrastructure.
- Soil erosion vulnerability under scenarios of climate land-use changes after the development of a large reservoir in a semi-arid areaPublication . Ferreira, Vera; Samora-Arvela, André; Panagopoulos, ThomasClimate and land-use/cover changes (LUCC) influence soil erosion vulnerability in the semi-arid region of Alqueva, threatening the reservoir storage capacity and sustainability of the landscape. Considering the effect of these changes in the future, the purpose of this study was to investigate soil erosion scenarios using the Revised Universal Soil Loss Equation (RUSLE) model. A multi-agent system combining Markov cellular automata with multi-criteria evaluation was used to investigate LUCC scenarios according to delineated regional strategies. Forecasting scenarios indicated that the intensive agricultural area as well as the sparse and xerophytic vegetation and rainfall-runoff erosivity would increase, consequently causing the soil erosion to rise from 1.78 Mg ha(-1) to 3.65 Mg ha(-1) by 2100. A backcasting scenario was investigated by considering the application of soil conservation practices that would decrease the soil erosion considerably to an average of 2.27 Mg ha(-1). A decision support system can assist stakeholders in defining restrictive practices and developing conservation plans, contributing to control the reservoir's siltation.