Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Spectral analysis, biocompounds, and physiological assessment of Cork Oak leaves: unveiling the interaction with Phytophthora cinnamomi and beyond
    Publication . Guerra, Rui; Pires, Rosa; Brazio, António; Cavaco, Ana Margarida; Schütz, Gabriela; Coelho, Ana Cristina
    The cork oak tree (Quercus suber L.) symbolizes the Montado landscape in Portugal and is a central element in the country’s social and economic history. In recent decades, the loss of thousands of cork oaks has been reported, revealing the ongoing decline of these agroforestry ecosystems. This emblematic tree of the Mediterranean Basin is host to the soil-born root pathogen Phytophthora cinnamomi, an active cork oak decline driver. In this framework, the early diagnosis of trees infected by the oomycete by non-invasive methods should contribute to the sustainable management of cork oak ecosystems, which motivated this work. Gas exchange and visible/near-infrared (400–1100 nm) reflectance spectroscopy measurements were conducted on leaves of both control and P. cinnamomi inoculated plants. These measurements were taken at 63, 78, 91, 126, and 248 days after inoculation. Additionally, at the end of the experiment, biochemical assays of pigments, sugars, and starch were performed. The spectroscopic measurements proved effective in distinguishing between control and inoculated plants, while the standard gas exchange and biochemistry data did not exhibit clear differences between the groups. The spectral data were examined both daily and globally, utilizing the PARAFAC method applied to a three-way array of samples × wavelengths × days. The separation of the two plant groups was attributed to variations in water content (4v (OH)); shifts in the spectra red edge; and structural modifications in the epidermal layer and leaves’ mesophyll. These spectral signatures can assist in the field identification of cork oaks that are interacting with P. cinnamomi.
  • Spatiotemporal modelling of the quality and ripening of two cultivars of "Algarve Citrus" orchards at different edaphoclimatic conditions
    Publication . Cavaco, Ana M.; Cruz, Sandra P.; Antunes, M. Dulce; Guerra, Rui; Pires, Rosa; Afonso, Andreia M.; Brazio, António; Silva, Leonardo; Lucas, Marcia Rosendo; Daniel, Mariana; Panagopoulos, Thomas
    Algarve Citrus are non-climacteric Protected Geographical Indication (PGI) commodities. They are harvested with minimal levels of juice content (>35 %), soluble solids content (SSC) (>10 %) and maturation index (MI) (>8), as required by the respective PGI normative reference. These internal quality attributes (IQA) are usually determined in small samples of fruit collected from the orchards close to harvest. This study aimed to use geostatistics to help predict the optimal harvest date (OHD) of two sweet orange (Citrus sinensis (L.) Osbeck) cultivars, namely, 'Newhall', and 'Valencia Late', at two different edaphoclimatic conditions observed in the locations of Quarteira, at the coast, and Paderne, near a mountainous area. Two orchards of 0.5-0.7 ha per cultivar were chosen and a total of 25 trees were georeferenced within each orchard, comprising 100 sampling points/trees. Firmness, juice content, SSC and MI of fruit were determined through time. In general, the fruit grown in Quarteira showed higher SSC and MI and lower firmness values, ripening two months earlier than those grown in Paderne, although the full effect of the various edaphoclimatic factors on these results are not fully understood. However, geospatial modelling of ripening has shown a large variability within the orchards, with some IQA evolution patterns observed in some orchards and/or cultivars but not in the others. Specifically, 1) a negative correlation between the firmness and MI spatial patterns; 2) a variable decay rate of firmness, much faster in Paderne for 'Valencia Late'; 3) local minima in juice content, below 35 %, observed in restricted spatial areas and in specific time periods, and which were clearer in 'Newhall'. These local variations highlight the need for an optimized management based on geospatial modelling. For example, the variable decay rate of firmness must be taken into account during fruit harvest and postharvest handling. On the other side, the observation of localized plots with juice content below 35 % must be contextualized in the broader picture of the entire orchard which, in the present study, always had consistent temporal average level above 35 %. This study has provided evidence that fruit ripening variability should be considered in the site-specific orchard management of citrus to optimize their harvest date.