Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Modelling of optoelectronic circuits based on resonant tunneling diodesPublication . Rei, João F. M.; Foot, James A.; Rodrigues, Gil; Figueiredo, José; Costa, M. F. M.Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient response. We will present and discuss the models, and evaluate the simulation packages.
- Resonant tunnelling diode terahertz sources for broadband wireless communicationsPublication . Wasige, Edward; Alharbi, Khalid H.; Al-Khalidi, Abdullah; Wang, Jue; Khalid, Ata; Rodrigues, Gil; Figueiredo, José; Sadwick, L. P.; Yang, T.This paper will discuss resonant tunnelling diode (RTD) sources being developed on a European project iBROW (ibrow. project. eu) to enable short-range multi-gigabit wireless links and microwave-photonic interfaces for seamless links to the optical fibre backbone network. The practically relevant output powers are at least 10 mW at 90 GHz, 5 mW at 160 GHz and 1 mW at 300 GHz and simulation and some experimental results show that these are feasible in RTD technology. To date, 75 - 315 GHz indium phosphide (InP) based RTD oscillators with relatively high output powers in the 0.5 - 1.1 mW range have been demonstrated on the project. They are realised in various circuit topologies including those that use a single RTD device, 2 RTD devices and up to 4 RTD devices for increasingly higher output power. The oscillators are realised using only photolithography by taking advantage of the large micron-sized but broadband RTD devices. The paper will also describe properties of RTD devices as photo-detectors which makes this a unified technology that can be integrated into both ends of a wireless link, namely consumer portable devices and fibre-optic supported base-stations (since integration with laser diodes is also possible).