Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidificationPublication . Gregorio, Silvia; Ruiz-Jarabo, Ignacio; Carvalho, Edison S. M.; Fuentes, JuanMarine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.
- Endocrine regulation of carbonate precipitate formation in marine fish intestine by stanniocalcin and PTHrPPublication . Gregorio, Silvia F.; Carvalho, Edison S. M.; Campinho, Marco A.; Power, Deborah M.; Canario, Adelino V. M.; Fuentes, JuanIn marine fish, high epithelial bicarbonate secretion by the intestine generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. In vitro studies highlight the involvement of the calciotropic hormones PTHrP (parathyroid hormone-related protein) and stanniocalcin (STC) in the regulation of epithelial bicarbonate transport. The present study tested the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo. Sea bream (Sparus aurata) juveniles received single intraperitoneal injections of piscine PTHrP(1-34), the PTH/PTHrP receptor antagonist PTHrP(7-34) or purified sea bream STC, or were passively immunized with polyclonal rabbit antisera raised against sea bream STC (STC-Ab). Endocrine effects on the expression of the basolateral sodium bicarbonate cotransporter (Slc4a4.A), the apical anion exchangers Slc26a6.A and Slc26a3.B, and the V-type proton pump beta-subunit (Atp6v1b) in the anterior intestine were evaluated. In keeping with their calciotropic nature, the hypocalcaemic factors PTHrP(7-34) and STC upregulated gene expression of all transporters. In contrast, the hypercalcaemic factor PTHrP(1-34) and STC antibodies downregulated transporters involved in the bicarbonate secretion cascade. Changes in intestine luminal precipitate contents provoked by calcaemic endocrine factors validated these results: 24 h postinjection either PTHrP(1-34) or immunization with STC-Ab reduced the carbonate precipitate content in the sea bream intestine. In contrast, the PTH/PTHrP receptor antagonist PTHrP(7-34) increased not only the precipitated fraction but also the concentration of HCO3 equivalents in the intestinal fluid. These results confirm the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo in the intestine of marine fish. Furthermore, they illustrate for the first time in fish the counteracting effect of PTHrP and STC, and reveal an unexpected contribution of calcaemic factors to acid-base balance.