Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Structure and IR Spectra of 3(5)-Aminopyrazoles and UV-induced tautomerization in argon matrixPublication . Secrieru, Alina; Lopes, Susy; Cristiano, Maria L. S.; Fausto, RuiThe prototropic tautomerism in 3(5)-aminopyrazoles was investigated by matrix isolation infrared (IR) spectroscopy, supported by DFT(B3LYP)/6-311++G(d,p) calculations. In consonance with the experimental data, the calculations predict tautomer 3-aminopyrazole (3AP) to be more stable than the 5-aminopyrazole (5AP) tautomer (calculated energy difference: 10.7 kJ mol−1 ; Gibbs free energy difference: 9.8 kJ mol−1 ). The obtained matrix isolation IR spectra (in both argon and xenon matrices) were interpreted, and the observed bands were assigned to the tautomeric forms with help of vibrational calculations carried out at both harmonic and anharmonic levels. The matrix-isolated compound (in argon matrix) was then subjected to in situ broadband UV irradiation (λ > 235 nm), and the UV-induced transformations were followed by IR spectroscopy. Phototautomerization of the 3AP tautomer into the 5AP form was observed as the strongly prevalent reaction.
- Substituent effects on EI-MS fragmentation patterns of 5-Allyloxy-1-aryl-tetrazoles and 4-Allyl-1-aryl-tetrazole-5-ones; Correlation with UV-induced fragmentation channelsPublication . Secrieru, Alina; Oumeddour, Rabah; Cristiano, Maria de Lurdes1,4- and 1,5-disubstituted tetrazoles possess enriched structures and versatile chemistry, representing a challenge for chemists. In the present work, we unravel the fragmentation patterns of a chemically diverse range of 5-allyloxy-1-aryl-tetrazoles and 4-allyl-1-aryl-tetrazolole-5-ones when subjected to electron impact mass spectrometry (EI-MS) and investigate the correlation with the UV-induced fragmentation channels of the matrix-isolated tetrazole derivatives. Our results indicate that the fragmentation pathways of the selected tetrazoles in EI-MS are highly influenced by the electronic effects induced by substitution. Multiple pathways can be envisaged to explain the mechanisms of fragmentation, frequently awarding common final species, namely arylisocyanate, arylazide, arylnitrene, isocyanic acid and hydrogen azide radical cations, as well as allyl/aryl cations. The identified fragments are consistent with those found in previous investigations concerning the photochemical stability of the same class of molecules. This parallelism showcases a similarity in the behaviour of tetrazoles under EI-MS and UV-irradiation in the inert environment of cryogenic matrices of noble gases, providing efficient tools for reactivity predictions, whether for analytical ends or more in-depth studies. Theoretical calculations provide complementary information to articulate predictions of resulting products.
- Antimalarial agents as therapeutic tools against toxoplasmosis: a short bridge between two distant illnessesPublication . Secrieru, Alina; Costa, Inês C. C.; O'Neill, Paul M.; Cristiano, Maria De LurdesToxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
- 4-hydroxyquinolin-2(1H)-one isolated in cryogenic argon and xenon matrices: tautomers and photochemistryPublication . Secrieru, Alina; Lopes, S.; Nikitin, T.; Cristiano, Maria de Lurdes; Fausto, R.4-Hydroxyquinolin-2(1H)-one (4HQ2O) was synthesized, isolated in cryogenic matrices (argon and xenon), and studied by infrared spectroscopy. Quantum chemical calculations carried out at the DFT(B3LYP)/6-311++G (3df,3pd) level of theory were used to determine the conformational and tautomeric properties of the molecule. Two tautomeric forms were identified in the as-deposited matrices with the help of the theoretical data. To investigate the photochemistry of the compound, in situ broadband ultraviolet (lambda > 283 nm) irradiation of the asdeposited argon matrix was performed. This irradiation led to the generation of an additional tautomer, together with the products of fragmentation of the heterocyclic ring of the molecule, specifically isocyanic acid and carbon monoxide. Photoproducts such as 1,3-dihydro-2H-indol-2-one and cyclohepta-1,2,4,6-tetraene were also observed in the photolyzed argon matrix. A comprehensive assignment of the infrared spectra of all the species observed experimentally is presented.