Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Larval and juvenile development of dusky grouper Epinephelus marginatus reared in mesocosms
    Publication . Cunha, M. E.; Re, P.; Quental-Ferreira, H.; Gavaia, Paulo J.; Pousão-Ferreira, P.
    The larval development of the dusky grouper Epinephelus marginatus up to the benthic juvenile stage is described in detail to establish a reference for their larval identification. Development is described in terms of ontogenetic changes in morphology, growth, pigmentation, fin structure and skeletal structure. Larvae were reared in mesocosms at a mean temperature of 24·3◦ C, salinity of 36·5, dissolved oxygen of 6·4mg l−1 and pH of 8·2. Newly hatched larvae had an estimated total length (LT) of 2·3 mm. On the second day post hatching the yolk was almost fully absorbed with traces of the oil globule still present, the eyes were already pigmented and mouth and gut functional. At this stage the cranial skeletal elements for feeding and breathing (mouth and gills) and the pectoral-fin support were already present. About 50% of the observed larvae had food in their guts. Pigmentation was very characteristic, consisting of two large chromatophores visible on the edge of the primordial fin, close to the midpoint of the post-anal region of the body and over the midgut and hindgut and post-anal portion of the body. At 2·9mm LT the emergence of the second dorsal-fin spine, characteristic of the Epinephilinae, was clearly visible. The pre-flexion stage started in larva of 3·2mm LT. At 5·5mm LT the larvae possessed posterior preopercular angle spines, and the dorsal and pelvic spines presented serrated edges and were pigmented. The water surface-tension-related death of the yolk sac and pre-flexion larvae described in the rearing of several other grouper species did not occur during E. marginatus culture. Notochord flexion, with initial ossification of the caudal-fin supporting elements, started at 6·6mm LT. At this stage the major melanophores, preopercular, dorsal and pelvic spines and mandibular teeth were already present. Transformation of larvae into juveniles occurred when larvae averaged 13·8mm LT. Juveniles with a mean LT of 20·1mm started to settle and most of them were benthic with a mean LT of 26·8 mm.
  • Lack of essential fatty acids in live feed during larval and post-larval rearing: effect on the performance of juvenile Solea senegalensis
    Publication . Dâmaso-Rodrigues, M. L.; Pousão-Ferreira, P.; Ribeiro, Laura; Coutinho, J.; Bandarra, N.; Gavaia, Paulo J.; Narciso, L.; Morais, S.
    Despite the large progress obtained in recent years, Senegalese sole (Solea senegalensis) production of high quality juveniles is still a bottleneck. This paper examines the effect of larval and post-larval lipid nutrition on juvenile performance and quality. Four dietary treatments were tested: A—enriched Artemia spp. (EA); B—non-enriched Artemia spp. (NEA); C—EA during the pelagic larval period and NEA after larval settlement; D—50% EA and 50% NEA. Juvenile fatty acid profile at 60 days after hatching (DAH) clearly reflected the larval and post-larval diet composition. Feeding sole larvae on NEA (poor in lipids and essential fatty acids-EFA) had a negative effect, reducing growth (total length and dry weight) after 30 DAH and decreasing digestive enzyme activity at the end of the rearing period (60 DAH). However, relatively good performance compared to the EFA-richest treatment (A) was obtained when larvae were fed 50% EA and 50% NEA (D) or even EA only during the pelagic larval period followed by NEA after larval settlement (C). Malpigmentation was not affected by the dietary regimes and its incidence was very low. However, skeletal deformities were prevalent, particularly in the caudal complex, independently of diet. The results confirm that Senegalese sole appear to have lower larval EFA requirements than most cultured marine species and potentially even lower requirements during the post-larval stage. The importance of studying the impact of early nutrition on later juvenile stages was clearly highlighted in this study.