Repository logo
 
Loading...
Project Logo
Research Project

Coimbra Chemistry Center

Authors

Publications

Ethyl 7-Acetyl-8a-methyl-3-(1-phenyl-1H-tetrazol-5-yl)-1,4,4a,5,6,8a-hexahydro-7H-pyrano[2,3-c]pyridazine-1-carboxylate
Publication . Lopes, Susana M. M.; Lemos, Americo; Paixão, José A.; Pinho e Melo, Teresa M. V. D.
The Diels–Alder reaction of ethyl 3-(1-phenyl-1H-tetrazol-5-yl-1,2-diaza-1,3-butadiene-1-carboxylate with 2-acetyl-6-methyl-2,3-dihydro-4H-pyran (methyl vinyl ketone dimer) regioselectively afforded the corresponding 3-(tetrazol-5-yl)-hexahydro-7H-pyrano[2,3-c]pyridazine in quantitative yield. An X-ray crystal structure of this cycloadduct is reported.
Selective synthesis of 3-(1H-Tetrazol-5-yl)-indoles from 2H-Azirines and Arynes
Publication . Grosso, Carla; Alves, Cláudia; Sase, Terver J.; Alves, Nuno G.; Cardoso, Ana L.; Melo, Teresa M. V. D. Pinho e; Lemos, Americo
A new selective synthetic approach to indole derivatives bearing a tetrazole moiety has been developed. Arynes, generated in situ from o-(trimethylsilyl)aryl triflates and KF, reacted smoothly with 2-(2-benzyl-2H-tetrazol-5-yl)-2H-azirines to give 3-(2-benzyl-2H-tetrazol-5-yl)-indole derivatives with high selectivity. Deprotection of the tetrazole moiety gave 3-(1H-tetrazol-5-yl)-indole derivatives.
4-hydroxyquinolin-2(1H)-one isolated in cryogenic argon and xenon matrices: tautomers and photochemistry
Publication . Secrieru, Alina; Lopes, S.; Nikitin, T.; Cristiano, Maria de Lurdes; Fausto, R.
4-Hydroxyquinolin-2(1H)-one (4HQ2O) was synthesized, isolated in cryogenic matrices (argon and xenon), and studied by infrared spectroscopy. Quantum chemical calculations carried out at the DFT(B3LYP)/6-311++G (3df,3pd) level of theory were used to determine the conformational and tautomeric properties of the molecule. Two tautomeric forms were identified in the as-deposited matrices with the help of the theoretical data. To investigate the photochemistry of the compound, in situ broadband ultraviolet (lambda > 283 nm) irradiation of the asdeposited argon matrix was performed. This irradiation led to the generation of an additional tautomer, together with the products of fragmentation of the heterocyclic ring of the molecule, specifically isocyanic acid and carbon monoxide. Photoproducts such as 1,3-dihydro-2H-indol-2-one and cyclohepta-1,2,4,6-tetraene were also observed in the photolyzed argon matrix. A comprehensive assignment of the infrared spectra of all the species observed experimentally is presented.
Lignin-furanic rigid foams: Enhanced methylene blue removal capacity, recyclability, and flame retardancy
Publication . Duarte, Hugo; Brás, João; Saoudi Hassani, El Mokhtar; Aliaño González, María José; Magalhães, Solange; Alves, Luís; Valente, Artur J. M.; Eivazi, Alireza; Norgren, Magnus; Romano, Anabela; Medronho, Bruno
Worldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of climate change. Moreover, wastewater treatment needs further development, given the presence of persistent organic pollutants, such as dyes and pharmaceuticals. In addition, the continuous increase in energy demand and rising prices directly impact households and businesses, highlighting the importance of energy savings through effective building insulation. In this regard, tannin-furanic foams are recognized as promising sustainable foams due to their fire resistance, low thermal conductivity, and high water and chemical stability. In this study, tannin and lignin rigid foams were explored not only for their traditional applications but also as versatile materials suitable for wastewater treatment. Furthermore, a systematic approach demonstrates the complete replacement of the tannin-furan foam phenol source with two lignins that mainly differ in molecular weight and pH, as well as how these parameters affect the rigid foam structure and methylene blue (MB) removal capacity. Alkali-lignin-based foams exhibited notable MB adsorption capacity (220 mg g−1), with kinetic and equilibrium data analysis suggesting a multilayer adsorption process. The prepared foams demonstrated the ability to be recycled for at least five adsorption-desorption cycles and exhibited effective flame retardant properties. When exposed to a butane flame for 5 min, the foams did not release smoke or ignite, nor did they contribute to flame propagation, with the red glow dissipating only 20 s after flame exposure.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDP/00313/2020

ID