Repository logo
 
Loading...
Project Logo
Research Project

Aligning Nature-based Solutions to coastal adaptation

Authors

Publications

The birth of backbarrier marshes in Culatra Island (Ria Formosa, South Portugal)
Publication . Kompiadou, Aikaterini; Carrasco, Rita; Costas, Susana; Ramires, Margarida; Matias, Ana
The rapid elongation of Culatra Island, a sandy barrier in the Ria Formosa chain (S. Portugal), since the mid1940s led to the formation of three new embayments in its backbarrier that were gradually colonised by halophytic vegetation. This provided a rare opportunity to collect information and data on the very early stages of backbarrier marsh plant establishment and evolution. Sediment (surface and subsurface) sampling in two of the recently formed bays, combined with information extracted from vertical aerial photographs, allowed us to assess modern sedimentation characteristics and vertical accretion rates since the shift from a bare sandflat to a vegetated marsh platform. Present-day topography appears largely inherited by overwash or/and inlet-related tidal deposits that provided the necessary sediment pulse for the formation of an intertidal sandy substrate, suitable for colonisation. The variability in accretion rates, noted even within the same embayment, as well as the differences in accretion balance with similarly young backbarrier marshes, highlight the importance of local conditions (sediment import, distance to creeks and marsh edge, storm frequency and intensity) to marsh buildup, even during the very early stages. Variable accretion rates were also identified over intertidal seagrass patches, indicating similar influences. Organic deposition rates were very low in all vegetated intertidal habitats, indicating the dominance of mineral deposition to the vertical growth. A lag, ranging from roughly 10-30 years, was observed between the formation of the intertidal sandy platform and plant establishment in all embayments. The different timescales in the observed lag are likely linked to differences in hydrodynamic conditions, promoted by the embayment morphology (opening width). The lowest lag was observed in protected embayments, which could reflect a 'typical' delay for plant establishment in the system, while the highest lag was associated with higher energy backbarrier environments.
Ecogeomorphic response of a coastal dune in southern Portugal regulated by extrinsic factors
Publication . Costas, Susana; Gallego-Fernández, Juan B.; Bon de Sousa, Luísa; Kombiadou, Katerina
Coastal dunes are complex landforms whose morphology results from various interactions between biotic and abiotic factors. Here, we explore the longshore variability of the morphological features, plant community dis-tribution and accumulation patterns of a dune segment (1.4 km-long) located at the downdrift end of a sandy peninsula in the Ria Formosa, Portugal. To understand the main drivers of the observed variability and the implications for dune morphological response, this information was combined with recent multidecadal shore-line evolution data. The integrated results document significant differences in dune morphology, sedimentation patterns and plant zonation, with two distinct dune configurations or states identified in close proximity. One (western sector) shows a narrower dune system, vegetation cover characterised by pioneer species with low densities, and squeezed plant zonation. Conversely, the other (eastern sector) presents a wider dune system with a new foredune, a more developed plant zonation and relatively high vegetation density. Both states could be partially explained by the recent shoreline trends and inlet shifts, with stable to retreating trends in the western sector and shoreline progradation in the eastern one. Plant zonation and accumulation patterns suggest that the dune along the retreating sector is in a cycle of inland migration, encouraged by the reduced accommodation space and the low retention capacity of the vegetation across the dune stoss. Alternatively, observations along the prograding sector suggest that the greater accommodation space and the stabilising feedback between vegetation and topography promoted the seaward progradation of the system and the development of an incipient foredune. Outcomes support the importance of biogeomorphic feedbacks for the dune configuration, but they also evidence that the role of vegetation within the feedback is primarily regulated by physical factors that ultimately promote or inhibit vegetation effects on dune topograph
Exploring controls on coastal dune growth through a simplified model
Publication . Kombiadou, Katerina; Costas, Susana; Roelvink, Dano
Process-based morphodynamic models can be useful in understanding coastal dune responses to disturbances, as well as possible evolutionary patterns. To this aim, we employ Duna, a simplified 1D morphodynamic model, to assess the influence of dune morphology (height and slope) on sand transfer and deposition across the dune profile for different beach widths and wind incidence angles through idealized experiments. Simulations of real conditions show good model performance, both in wind flow reproduction and in topographic change along the dune profiles tested. The idealized experiments show that wind speed increases and sand accumulation decreases logarithmically with dune height and linearly with stoss slope along the dune profile. Fetch and cosine transport limiting parameters are reflected in the sand accumulated windwards from the toe, while sand transfer to the dune appears controlled by multiple factors; the higher the dune and/or the narrower the beach, the likelier that maximum accumulation occurs under oblique winds. Results point to two different types of evolution for high dunes. Either the vegetation is dense enough to maintain the stoss position, in which case vertical growth near-ceases and seaward progradation is promoted, or the stoss is eroded and landward retreat dominates, in which case sand transfer to the crest and lee continues as a mixture of low input from the beach and recycled sand from the stoss. Coastal dunes are sensitive ecosystems whose survival depends on their adaption to changing conditions. Thus, it is important to understand how dune characteristics (i.e., shape, vegetation type, and cover) and prevailing conditions (i.e., wind speed and direction, beach width) determine where and when sand is deposited onto the dune, promoting growth. This is the result of a complex balance between winds that bring sand to the dune from the adjacent beach (main sand provider), the dune topography (decelerating winds near the dune toe and accelerating them along the slope, up to the dune crest) and dune plants (slowing winds down in their vicinity and trapping wind-blown sand). The main controls on these complex interactions have been incorporated into the Duna model for aeolian sand transport. After tuning parameters and verifying that simulated results are accurate, Duna is used to assess the impacts of dune shape (height and slope), beach width, vegetation coverage and wind angles to wind flow and topographic changes on the dune. Results show that both wind speed and sand accumulation vary logarithmically with dune height and linearly with slope. The simulated sand distribution along the dune is used as a basis to draw generalized dune growth patterns. Duna morphodynamic model is calibrated and validated against Computational Fluid Dynamics model results and field dataThe influence of dune shape (height and slope), wind incidence, vegetation density and beach width on dune growth is investigatedDune height and plant cover are the main factors controlling accumulation patterns, sand recycling and vertical growth
Review of the quantification of aeolian sediment transport in coastal areas
Publication . Husemann, Paul; Romão, Frederico; Lima, Márcia; Costas, Susana; Coelho, Carlos
Coastal dunes, formed and shaped by aeolian sediment transport, play a crucial role in ecosystem services and act as natural flood and coastal erosion defenses. This paper delves into theoretical equations and numerical models predicting sediment transport. Numerical models like cellular automata, XBeach-DUNA, the coastal dune model, and others are analyzed for their ability to simulate dune morphology, erosion processes, and vegetation impacts accurately. Evaluated are field observation and measurement techniques, such as sand traps, impact sensors, and optical sensors, for their precision in quantifying aeolian dynamics. Further examined is the effectiveness of vegetation and fencing in dune stabilization, noting species-specific responses and the influence of fence design on sediment accumulation. These tools offer insights into optimizing aeolian sediment management for coastal protection. By conducting a systematic review and connecting theoretical, empirical, and modeling findings, this study highlights the complex challenge of measuring and managing aeolian sediment transport and proposes integrated strategies for enhancing coastal dune resilience against the backdrop of climate change and erosion. This study’s objectives to bridge gaps in current understanding are met, highlighting the need for a multidisciplinary approach to coastal dune management and conservation, especially combining wind- and wave-driven processes.
Foredune initiation and early development through biophysical interactions
Publication . Costas, Susana; Serrão Bon de Sousa, Maria Luísa; Gallego-Fernández, Juan B.; Hesp, Patrick; Kombiadou, Katerina
Coastal dunes result from complex interactions between sand transport, topography and vegetation. However, uncertainty still persists due to limited quantitative analyses, integrating plant distribution and morphologic changes. This study aims to assess the initiation and maintenance of feedback processes by analysing the early development stages of incipient foredunes, combining data on the evolution of the plant cover and communities and dune morphology. Over three years, the monitoring of a newly formed dune (1 ha plot) reveals the progressive plant colonisation and the episodic accumulation of sand around vegetated areas controlled by sediment availability. Distinct colonisation rates were observed, influenced by inherited marine conditions, namely topography and presence of beach wrack. Berm-ridges provided elevations above the critical threshold for plant colonisation and surface roughness, aiding sediment accumulation. Beach wrack above this threshold led to rapid expansion and higher plant concentration. In the initial stages, vegetation cover significantly influenced sediment accumulation patterns, with higher accumulation around areas with high plant cover and low slopes or around areas with sparse vegetation but milder slopes. As the dune system matured and complexity grew, the link between vegetation cover and accumulation became nonlinear. Mid to low coverages (5 -30 %) retained most of the observed accumulation, especially when coupled with steep slopes, resulting from positive feedbacks between vegetation, topography and sand transport. As foredune developed, vegetation cover and diversity increased while inherited morphologies grew vertically, explaining the emergence of dune ridge morphological types. Flat surfaces lacking wrack materials experienced a three-year delay in colonisation and sand accumulation, leading to the formation of terrace -type incipient foredunes. These observations underline feedback processes during the early stages of dune formation, with physical feedbacks primarily driving initiation and biophysical feedbacks prevailing in subsequent colonisation stages.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

CEEC IND4ed

Funding Award Number

2021.04286.CEECIND/CP1672/CT0001

ID