Repository logo
 
Loading...
Project Logo
Research Project

“Assessing soil erosion due to land use change at the Alqueva reservoir surrounding area.”

Authors

Publications

Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed
Publication . Ferreira, V.; Panagopoulos, Thomas; Andrade, R.; Guerrero, Carlos; Loures, L.
The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.
Soil erosion vulnerability under scenarios of climate land-use changes after the development of a large reservoir in a semi-arid area
Publication . Ferreira, Vera; Samora-Arvela, André; Panagopoulos, Thomas
Climate and land-use/cover changes (LUCC) influence soil erosion vulnerability in the semi-arid region of Alqueva, threatening the reservoir storage capacity and sustainability of the landscape. Considering the effect of these changes in the future, the purpose of this study was to investigate soil erosion scenarios using the Revised Universal Soil Loss Equation (RUSLE) model. A multi-agent system combining Markov cellular automata with multi-criteria evaluation was used to investigate LUCC scenarios according to delineated regional strategies. Forecasting scenarios indicated that the intensive agricultural area as well as the sparse and xerophytic vegetation and rainfall-runoff erosivity would increase, consequently causing the soil erosion to rise from 1.78 Mg ha(-1) to 3.65 Mg ha(-1) by 2100. A backcasting scenario was investigated by considering the application of soil conservation practices that would decrease the soil erosion considerably to an average of 2.27 Mg ha(-1). A decision support system can assist stakeholders in defining restrictive practices and developing conservation plans, contributing to control the reservoir's siltation.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BD/69548/2010

ID