Loading...
Research Project
Strategic Project - UI 4023 - 2011-2012
Funder
Authors
Publications
Impact of biohybrid magnetite nanoparticles and moroccan propolis on adherence of methicillin resistant strains of staphylococcus aureus
Publication . EL-GEUNDOUZ, Soukaina; AAZZA, Smail; Lyoussi, Badiaa; Bankova, Vassya; Lourenço, J. P.; Costa, Ana; Mariano, José; Miguel, Maria; Faleiro, Maria Leonor
Biofilm bacteria are more resistant to antibiotics than planktonic cells. Propolis possesses antimicrobial activity. Generally, nanoparticles containing heavy metals possess antimicrobial and antibiofilm properties. In this study, the ability of adherence of Methicillin Resistant Strains of Staphylococcus aureus (MRSA) to catheters treated with magnetite nanoparticles (MNPs), produced by three methods and functionalized with oleic acid and a hydro-alcoholic extract of propolis from Morocco, was evaluated. The chemical composition of propolis was established by gas chromatography mass spectrometry (GC-MS), and the fabricated nanostructures characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy and Fourrier transform infrared spectroscopy (FTIR). The capacity for impairing biofilm formation was dependent on the strain, as well as on the mode of production of MNPs. The co-precipitation method of MNPs fabrication using Fe(3+) and Na₂SO₃ solution and functionalized with oleic acid and propolis was the most effective in the impairment of adherence of all MRSA strains to catheters (p < 0.001). The adherence of the strain MRSA16 was also significantly lower (p < 0.001) when the catheters were treated with the hybrid MNPs with oleic acid produced by a hydrothermal method. The anti-MRSA observed can be attributed to the presence of benzyl caffeate, pinocembrin, galangin, and isocupressic acid in propolis extract, along with MNPs. However, for MRSA16, the impairment of its adherence on catheters may only be attributed to the hybrid MNPs with oleic acid, since very small amount, if any at all of propolis compounds were added to the MNPs.
Temporal metabolic profiling of theQuercus suber-Phytophthora cinnamomisystem by middle-infrared spectroscopy
Publication . Hardoim, P.R.; Guerra, Rui Manuel Farinha das Neves; Costa, Ana M. Rosa da; Serrano, M. S.; Sánchez, M. E.; Coelho, A. C.
The oomycete Phytophthora cinnamomi is an aggressive plant pathogen, detrimental to many ecosystems including cork oak (Quercus suber) stands, and can inflict great losses in one of the greatest ‘hotspots’ for biodiversity in the world. Here, we applied Fourier transform-infrared (FT-IR) spectroscopy combined with chemometrics to disclose the metabolic patterns of cork oak roots and P. cinnamomi mycelium during the early hours of the interaction. As early as 2 h post-inoculation (hpi), cork oak roots showed altered metabolic
patterns with significant variations for regions associated with carbohydrate, glycoconjugate and lipid groups when compared to mockinoculated plants. These variations were further extended at 8 hpi. Surprisingly, at 16 hpi, the metabolic changes in inoculated and mock-inoculated plants were similar, and at 24 hpi, the metabolic patterns of the regions mentioned above were inverted when compared to samples collected at 8 hpi. Principal component analysis of the FT-IR spectra confirmed that the metabolic patterns of inoculated cork oak roots could be readily distinguished from those of mock-inoculated plants at 2, 8 and 24 hpi, but not at 16 hpi. FT-IR spectral analysis
from mycelium of P. cinnamomi exposed to cork oak root exudates revealed contrasting variations for regions associated with protein groups at 16 and 24 h post-exposure (hpe), whereas carbohydrate and glycoconjugate groups varied mainly at 24 hpe. Our results revealed early alterations in the metabolic patterns of the host plant when interacting with the biotrophic pathogen. In addition, the FTIR technique can be successfully applied to discriminate infected cork oak plants from mock-inoculated plants, although these differences were dynamic with time. To a lesser extent, the metabolic patterns of P. cinnamomi were also altered when exposed to cork oak root exudates.
Temporal metabolic profiling of the Quercus suber-phytophthora cinnamomi system by middle-infrared spectroscopy
Publication . Hardoim, P.R.; Guerra, Rui Manuel Farinha das Neves; Rosa Da Costa, Ana; Serrano, M. S.; Sanchez, M. E.; Coelho, A. C.
The oomycete Phytophthora cinnamomi is an aggressive plant pathogen, detrimental to many ecosystems including cork oak (Quercus suber) stands, and can inflict great losses in one of the greatest hotspots' for biodiversity in the world. Here, we applied Fourier transform-infrared (FT-IR) spectroscopy combined with chemometrics to disclose the metabolic patterns of cork oak roots and P.cinnamomi mycelium during the early hours of the interaction. As early as 2h post-inoculation (hpi), cork oak roots showed altered metabolic patterns with significant variations for regions associated with carbohydrate, glycoconjugate and lipid groups when compared to mock-inoculated plants. These variations were further extended at 8hpi. Surprisingly, at 16hpi, the metabolic changes in inoculated and mock-inoculated plants were similar, and at 24hpi, the metabolic patterns of the regions mentioned above were inverted when compared to samples collected at 8hpi. Principal component analysis of the FT-IR spectra confirmed that the metabolic patterns of inoculated cork oak roots could be readily distinguished from those of mock-inoculated plants at 2, 8 and 24hpi, but not at 16hpi. FT-IR spectral analysis from mycelium of P.cinnamomi exposed to cork oak root exudates revealed contrasting variations for regions associated with protein groups at 16 and 24h post-exposure (hpe), whereas carbohydrate and glycoconjugate groups varied mainly at 24hpe. Our results revealed early alterations in the metabolic patterns of the host plant when interacting with the biotrophic pathogen. In addition, the FT-IR technique can be successfully applied to discriminate infected cork oak plants from mock-inoculated plants, although these differences were dynamic with time. To a lesser extent, the metabolic patterns of P.cinnamomi were also altered when exposed to cork oak root exudates.
Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging
Publication . Mouffouk, Fouzi; Dornelle, Daniel; Lopes, Andre D.; Martins, Jorge; Abu-Salah, Khalid; Costa, Ana M. Rosa da; dos Santos, Nuno; Sau, Pablo; Simão, Teresa; Alrokayan, Salman A.
Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.
Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy
Publication . André, E. M.; Pensado, A.; Resnier, P.; Braz, L.; Costa, Ana M. Rosa da; Passirani, C.; Sanchez, A.; Montero-Menei, C. N.
To direct stem cell fate, a delicate control of gene expression through small interference RNA (siRNA) is emerging as a new and safe promising strategy. In this way, the expression of proteins hindering neuronal commitment may be transiently inhibited thus driving differentiation. Mesenchymal stem cells (MSC), which secrete tissue repair factors, possess immunomodulatory properties and may differentiate towards the neuronal lineage, are a promising cell source for cell therapy studies in the central nervous system. To better drive their neuronal commitment the repressor Element-1 silencing transcription (REST) factor, may be inhibited by siRNA technology. The design of novel nanoparticles (NP) capable of safely delivering nucleic acids is crucial in order to successfully develop this strategy. In this study we developed and characterized two different siRNA NP. On one hand, sorbitan monooleate (Span(®)80) based NP incorporating the cationic components poly-l-arginine or cationized pullulan, thus allowing the association of siRNA were designed. These NP presented a small size (205nm) and a negative surface charge (-38mV). On the other hand, lipid nanocapsules (LNC) associating polymers with lipids and allowing encapsulation of siRNA complexed with lipoplexes were also developed. Their size was of 82nm with a positive surface charge of +7mV. Both NP could be frozen with appropriate cryoprotectors. Cytotoxicity and transfection efficiency at different siRNA doses were monitored by evaluating REST expression. An inhibition of around 60% of REST expression was observed with both NP when associating 250ng/mL of siRNA-REST, as recommended for commercial reagents. Span NP were less toxic for human MSCs than LNCs, but although both NP showed a similar inhibition of REST over time and the induction of neuronal commitment, LNC-siREST induced a higher expression of neuronal markers. Therefore, two different tailored siRNA NP offering great potential for human stem cell differentiation have been developed, encouraging the pursuit of further in vitro and in vivo in studies.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
PEst-OE/QUI/UI4023/2011