Loading...
Research Project
INTEGRATIVE ROLES OF VITAMIN K: NUTRITIONAL REQUIREMENTS FOR BETTER BONE DEVELOPMENT
Funder
Authors
Publications
Normal and histopathological organization of the opercular bone and vertebrae in gilthead sea bream Sparus aurata
Publication . Ortiz-Delgado, Juan B.; Fernández Monzón, Ignacio Valentín; Sarasquete, Carmen; Gisbert, Enric
This study provides a comprehensive description of the tissue organization of non-deformed and deformed opercula and vertebrae from gilthead sea bream Sparus aurata juveniles by means of histological, histochemical and immunohistochemical approaches. Two types of opercular anomalies are described: the folding of the opercle and subopercle into the gill chamber, starting at the upper corner of the branchial cleft and extending down to its lower third; and the partial lack of the operculum (opercle, subopercle, interopercle and preopercle underdeveloped) with a regression of the loose edge extending down to its lower third. Histological observations revealed a rare type of bone remodelling process in the opercular structure, which consisted of the coalescence of contacting bone tissues (presumably from the preopercle and opercle), resulting in skeletal tissue with a trabecular aspect filled by a single-cell epithelium of cubic osteoblastic-like cells. Differences in collagen fiber thickness and its 3-dimensional arrangement between normal and deformed opercula were also found. Lordotic vertebrae were characterized by the formation of fibrous cartilage in the haemal and/or neural sides, indicating that a metaplastic shift occurred during the process of lordosis. Another major histomorphological change found in lordotic vertebrae was the complete loss of notochordal sheath integrity. Histological alterations were coupled with an imbalance of cell death and cell proliferation processes in lordotic vertebrae as well as that of bone formation/resorption, and extracellular matrix deposition activity differences which might have resulted from the remodelling process occurring in lordotic vertebrae. Altogether, these results provide an increase in our basic knowledge of bone disorders that contribute to our understanding of the mechanisms by which these skeletal anomalies appear in this fish species and which hamper its production efficiency.
New insights on vitamin K metabolism in senegalese sole (Solea senegalensis) based on ontogenetic and tissue-specific vitamin K epoxide reductase molecular data
Publication . Beato, Silvia; Marques, Carlos; Laizé, Vincent; Gavaia, Paulo; Fernández, Ignacio
Vitamin K (VK) is a key nutrient for several biological processes (e.g., blood clotting and bone metabolism). To fulfill VK nutritional requirements, VK action as an activator of pregnane X receptor (Pxr) signaling pathway, and as a co-factor of γ-glutamyl carboxylase enzyme, should be considered. In this regard, VK recycling through vitamin K epoxide reductases (Vkors) is essential and should be better understood. Here, the expression patterns of vitamin K epoxide reductase complex subunit 1 (vkorc1) and vkorc1 like 1 (vkorc1l1) were determined during the larval ontogeny of Senegalese sole (Solea senegalensis), and in early juveniles cultured under different physiological conditions. Full-length transcripts for ssvkorc1 and ssvkorc1l1 were determined and peptide sequences were found to be evolutionarily conserved. During larval development, expression of ssvkorc1 showed a slight increase during absence or low feed intake. Expression of ssvkorc1l1 continuously decreased until 24 h post-fertilization, and remained constant afterwards. Both ssvkors were ubiquitously expressed in adult tissues, and highest expression was found in liver for ssvkorc1, and ovary and brain for ssvkorc1l1. Expression of ssvkorc1 and ssvkorc1l1 was differentially regulated under physiological conditions related to fasting and re-feeding, but also under VK dietary supplementation and induced deficiency. The present work provides new and basic molecular clues evidencing how VK metabolism in marine fish is sensitive to nutritional and environmental conditions.
Vitamin A affects flatfish development in a thyroid hormone signaling and metamorphic stage dependent manner
Publication . Fernandez, Ignacio; Ortiz-Delgado, Juan B.; Darias, Maria J.; Hontoria, Francisco; Andree, Karl B.; Manchado, Manuel; Sarasquete, Carmen; Gisbert, Enric
Vitamin A (VA) and retinoid derivatives are known morphogens controlling vertebrate development. Despite the research effort conducted during the last decade, the precise mechanism of how VA induces post-natal bone changes, and particularly those operating through crosstalk with the thyroid hormones (THs) remain to be fully understood. Since effects and mechanisms seem to be dose and time-dependent, flatfish are an interesting study model as they undergo a characteristic process of metamorphosis driven by THs that can be followed by external appearance. Here, we studied the effects of VA imbalance that might determine Senegalese sole (Solea senegalensis) skeletogenetic phenotype through development of thyroid follicles, THs homeostasis and signaling when a dietary VA excess was specifically provided during pre-, pro-or post-metamorphic stages using enriched rotifers and Artemia as carriers. The increased VA content in enriched live prey was associated to a higher VA content in fish at all developmental stages. Dietary VA content clearly affected thyroid follicle development, T3 and T4 immunoreactive staining, skeletogenesis and mineralization in a dose and time-dependent fashion. Gene expression analysis showed that VA levels modified the mRNA abundance of VA- and TH-specific nuclear receptors at specific developmental stages. Present results provide new and key knowledge to better understand how VA and TH pathways interact at tissue, cellular and nuclear level at different developmental periods in Senegalese sole, unveiling how dietary modulation might determine juvenile phenotype and physiology.
Temporal and spatial expression patterns of pregnane X receptor and vitamin K epoxide reductase genes, two core molecular players on fish vitamin K homeostasis and skeletal development.
Publication . Fernández, Ignacio; Cancela, Leonor; Gavaia, Paulo J.
Vitamin K (VK) is a liposoluble vitamin known to be essential for bone metabolism by two different pathways: (i) by its
role as a coenzyme in the gamma-carboxylation of some skeletal proteins (e.g. osteocalcin (OC) and matrix Gla protein
(MGP); Price et al., 1998); and (ii) through its role in skeletal gene transcription via binding to the pregnane X receptor
(PXR; Azuma et al., 2010).
Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin
Publication . Cardeira Da Silva, João; Gavaia, Paulo J.; Fernandez, Ignacio; Cengiz, Ibrahim Fatih; Moreira-Silva, Joana; Oliveira, Joaquim Miguel; Reis, Rui L.; Cancela, Leonor; Laizé, Vincent
The ability of zebrafish to fully regenerate its caudal fin has been explored to better understand the mechanisms underlying de novo bone formation and to develop screening methods towards the discovery of compounds with therapeutic potential. Quantifying caudal fin regeneration largely depends on successfully measuring new tissue formation through methods that require optimization and standardization. Here, we present an improved methodology to characterize and analyse overall caudal fin and bone regeneration in adult zebrafish. First, regenerated and mineralized areas are evaluated through broad, rapid and specific chronological and morphometric analysis in alizarin red stained fins. Then, following a more refined strategy, the intensity of the staining within a 2D longitudinal plane is determined through pixel intensity analysis, as an indicator of density or thickness/volume. The applicability of this methodology on live specimens, to reduce animal experimentation and provide a tool for in vivo tracking of the regenerative process, was successfully demonstrated. Finally, the methodology was validated on retinoic acid-and warfarin-treated specimens, and further confirmed by micro-computed tomography. Because it is easily implementable, accurate and does not require sophisticated equipment, the present methodology will certainly provide valuable technical standardization for research in tissue engineering, regenerative medicine and skeletal biology.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BPD/82049/2011