Loading...
Research Project
DISTRIBUIÇÃO, ESTRUTURA E FUNÇÃO DO ANTIPORTE DE CA2+/H+ DAS VESÍCULAS SINÁPTICAS NO CÉREBRO
Funder
Authors
Publications
Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase
Publication . Silva, Virgília S.; Nunes, M. Alexandra; Cordeiro, J. Miguel; Calejo, Ana I.; Santos, Sofia; Neves, Paulo; Sykes, António V.; Morgado, Fernando; Dunant, Yves; Gonçalves, Paula P.
Closing the gap between adverse health effects of aluminum and its mechanisms of action still represents a huge challenge. Cholinergic dysfunction has been implicated in neuronal injury induced by aluminum. Previously reported data also indicate that in vivo and in vitro exposure to aluminum inhibits the mammalian (Na(+)/K(+))ATPase, an ubiquitous plasma membrane pump. This study was undertaken with the specific aim of determining whether in vitro exposure to AlCl(3) and ouabain, the foremost utilized selective inhibitor of (Na(+)/K(+))ATPase, induce similar functional modifications of cholinergic presynaptic nerve terminals, by comparing their effects on choline uptake, acetylcholine release and (Na(+)/K(+))ATPase activity, on subcellular fractions enriched in synaptic nerve endings isolated from rat brain, cuttlefish optic lobe and torpedo electric organ. Results obtained show that choline uptake by rat synaptosomes was inhibited by submillimolar AlCl(3), whereas the amount of choline taken up by synaptosomes isolated from cuttlefish and torpedo remained unchanged. Conversely, choline uptake was reduced by ouabain to a large extent in all synaptosomal preparations analyzed. In contrast to ouabain, which modified the K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions, AlCl(3) induced reduction of stimulated acetylcholine release was only observed when rat synaptosomes were challenged. Finally, it was observed that the aluminum effect on cuttlefish and torpedo synaptosomal (Na(+)/K(+))ATPase activity was slight when compared to its inhibitory action on mammalian (Na(+)/K(+))ATPase. In conclusion, inhibition of (Na(+)/K(+))ATPase by AlCl(3) and ouabain jeopardized the high-affinity (Na(+)-dependent, hemicholinium-3 sensitive) uptake of choline and the Ca(2+)-dependent, K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions. The effects of submillimolar AlCl(3) on choline uptake and acetylcholine release only resembled those of ouabain when rat synaptosomes were assayed. Therefore, important differences were found between the species regarding the cholinotoxic action of aluminum. The variability of (Na(+)/K(+))ATPase sensitivity to aluminum of cholinergic neurons might contribute to their differential susceptibility to this neurotoxic agent.
Acetylcholine release and choline uptake by cuttlefish (Sepia officinalis) optic lobe synaptosomes
Publication . Nunes, M. Alexandra; Santos, Sofia; Cordeiro, J. Miguel; Neves, Paulo; Silva, Virgília S.; Sykes, António V.; Morgado, Fernando; Dunant, Yves; Gonçalves, Paula P.
Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake
of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
POCTI
Funding Award Number
SFRH/BD/1079/2000