Repository logo
 
Loading...
Thumbnail Image
Publication

Regulatory mechanism of bivalve shell biomineralization and its response to global climate change

Use this identifier to reference this record.
Name:Description:Size:Format: 
Maoxiao Peng Thesis.pdf20.73 MBAdobe PDF Download

Abstract(s)

Bivalves are one of the most diverse animal groups in the ocean and are found everywhere on Earth. They provide important ecosystem services in the marine environment as they filter environmental waters but also contribute to the nutrient and carbon cycle and are a rich source of nutrients for humans and other animals. Aquaculture of marine bivalve is an economically important industry worldwide that is currently expanding and because bivalve production is environmental-friendly they can provide an alternative protein source to meet the growing demand for food by the growing world population. Bivalves are characterized by possessing two valves that form the shell that is secreted by the mantle which is essential for their survival since it protects them from the environment and predators but also serves as a store of minerals. How bivalves produce and maintain their shells has been the topic of many studies especially because this structure is considered to be highly sensitive to changes in the ocean environment as a consequence of climate change and environmental pollution compromising their existence and survival. However, the large biodiversity of bivalves, the limited number of species studied and the diversity of exuberant shells with different mineralized structures suggests that the mechanisms of shell formation and growth and their susceptibility to environmental stressors might be species-specific. The main objective of this thesis is to increase knowledge about bivalve shell biomineralization by exploring and comparing the molecular factors that regulate shell growth and maintenance and composition in two commercially important aquaculture species that occupy the same ecological niche but possess different shell morphologies the Pacific oyster (Magallana gigas) and the Mediterranean mussel (Mytilus galloprovincialis) using animal experimentation, and multi-omics analysis using available bivalve genomes and transcriptomes, biochemical and gene knock down approaches. The results of this thesis revealed that: 1) long non-coding RNAs (lncRNA) and non-matrix protein encoding genes are important factors in the regulation of shell matrix protein (SMP) and non-SMP genes that modify shell structure (Chapter 2), 2) shell growth in M. gigas and M. galloprovincialis is hampered by OA but the two animals respond differently and M. galloprovincialis employs a larger number of biomineralization genes and most likely invests more energy to maintain the shell (Chapter 3) and 3) there is a large diversity of CHS (Chitin-synthase) isoforms with a complex evolutionary history and that M. gigas and M. galloprovincialis (Chapter 4). The tissue distribution of CHS indicates a far more complex suite of actions than the production of part of the organic scaffold for calcium carbonate crystal deposition in the shell. Furthermore, CHS respond differently to OA implying plasticity in the response of chitin production and an involvement in modulating the production of the shell.
Os bivalves são um dos grupos de animais mais diversos existentes nos oceanos. Eles têm uma função importante em vários serviços no ecossistema marinho pois são importantes filtradores das águas ambientais, mas também têm um papel importante no ciclo de nutrientes e de carbono no ambiente marinho e são uma fonte importante de nutrientes na alimentação dos humanos e outros animais. A aquicultura de bivalves marinhos é uma das indústrias economicamente mais importantes no mundo e a produção de bivalves marinhos encontra-se em larga expansão. Como tem um baixo impacto ambiental, quando comparada com outros sistemas de produção animal, o consumo de bivalves representa uma fonte alternativa de proteína saudável para satisfazer as necessidades no aumento da procura de alimentos associado ao crescimento da população mundial. Os bivalves caracterizam-se por possuir duas válvulas que formam a sua concha calcificada produzida devido à atividade secretora do manto. Esta estrutura é essencial para a sua sobrevivência, pois os protege das agressões do meio ambiente e de predadores, mas também serve como uma importante reserva de minerais que são utilizados em caso de necessidade. A forma como os bivalves produzem e mantêm a sua concha calcificada tem sido tema de vários estudos de investigação, principalmente porque esta estrutura é sensível às alterações no ambiente marinho como consequência do impacto das alterações climáticas e da poluição ambiental causada pelo homem que comprometem a sua existência e sobrevivência. Considerando a grande biodiversidade de bivalves (~ 3000 espécies), os estudos existentes concentram-se especificamente em um número limitado de espécies. No entanto a diversidade de formas de conchas existentes com diferentes estruturas mineralizadas, sugerem que os mecanismos de formação e crescimento da concha e consequentemente as suas suscetibilidades aos fatores de stress ambiental poderão ser diferentes entre espécies. O objetivo principal desta tese é contribuir para uma melhor compreensão dos mecanismos que regulam a formação da concha em bivalves e sobre o impacto da Acidificação dos Oceanos (AO) na homeostase da manutenção da concha, tendo em consideração a diversidade de formas, estruturas e composição existentes. Nesta tese, pretende-se aumentar o conhecimento sobre o processo de biomineralização explorando e comparando os fatores moleculares que regulam o crescimento, manutenção e composição da concha comparando duas espécies de bivalves importantes em aquicultura que ocupam o mesmo nicho ecológico, mas possuem diferentes morfologias de conchas: a ostra do Pacífico (Magallana gigas, com conchas de válvulas moles e assimétricas) e o mexilhão mediterrâneo (Mytilus galloprovincialis, com conhas de válvulas duras e simétricas) através do uso da experimentação animal e de análises de multi-ómica (consulta de genomas e transcritomas de bivalves disponíveis em bases de dados públicas), abordagens bioquímicas e genéticas. Especificamente, esta tese foca-se em três objetivos principais: 1) Caracterizar os fatores envolvidos no crescimento e biomineralização da concha - através da análise multi-ómica e experimentação animal para identificar os fatores centrais envolvidos na formação da concha e caracterizar as vias regulatórias associados ao crescimento da concha em bivalves com válvulas assimétricas; 2) Determinar o impacto das alterações climáticas na concha- através da caracterização e comparação do efeito da AO no crescimento e na estrutura da concha por análises de transcritomas do manto, ensaios bioquímicos e analise fenotípica entre a ostra M. gigas e o mexilhão M. galloprovincialis; 3) Caracterizar a evolução e papel funcional das enzimas quitina sintases (CHS, envolvidas na formação da quitina presente na concha) em bivalves- através de análises comparativas e evolutivas dos diferentes membros desta família e da caracterização do impacto da AO na regulação da sua expressão no manto. Os resultados desta tese sugerem que: 1) Os RNAs não codificantes longos (lncRNA) têm um papel importante na regulação da expressão das proteínas da matriz da concha (SMP) e dos genes não-SMP que estão envolvidos no crescimento e na formação da estrutura da concha calcária (Capítulo 2); 2) A AO afeta o crescimento da concha tanto na ostra M. gigas como no mexilhão M. galloprovincialis, mas os dois bivalves desenvolvem mecanismos de resposta diferentes, sendo que o mexilhão M. galloprovincialis utiliza um número maior de genes envolvidos no processo de biomineralização e provavelmente investe mais energia para manter a estrutura da concha calcária quando comparado com a ostra M. gigas (Capítulo 3) e 3) Existe uma grande diversidade de isoformas de enzimas CHS em bivalves e a sua evolução é bastante complexa. Distribuição tecidular dos transcritos sugere que estas poderão estar envolvidas em um conjunto de ações diversas para além da produção da estrutura orgânica da concha e a resposta das CHS ao efeito da AO é especifica de cada espécie. Em resumo, os resultados descritos nesta tese contribuem para o aumento do conhecimento sobre os mecanismos de regulação da concha em bivalves marinhos e especula que a resposta fisiológica associada ao efeito da AO é diferente entre espécies e pode estar relacionada com os custos energéticos associados à construção e manutenção das microestruturas das suas conchas.

Description

Keywords

Bivalves Fatores de biomineralização da concha lncrna Quitina sintase

Citation

Organizational Units

Journal Issue

Publisher

Collections

CC License