Repository logo
 
Publication

Energy savings in HVAC systems using discrete model-based predictive control

dc.contributor.authorFerreira, P. M.
dc.contributor.authorSilva, S. M.
dc.contributor.authorRuano, Antonio
dc.date.accessioned2013-01-29T14:17:41Z
dc.date.available2013-01-29T14:17:41Z
dc.date.issued2012
dc.date.updated2013-01-26T16:05:55Z
dc.description.abstractThe paper addresses the problem of controlling an heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, and experimental results obtained within a classroom will be presented, demonstrating the feasibility and performance of the approach. Finally the energy savings resulting from the application of the method are estimated.por
dc.identifier.citationFerreira, Pedro M.; Silva, Sergio M.; Ruano, Antonio E. Energy savings in HVAC systems using discrete model-based predictive control, Trabalho apresentado em 2012 International Joint Conference on Neural Networks (IJCNN 2012 - Brisbane), In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 2012.por
dc.identifier.isbn978-1-4673-1490-9
dc.identifier.otherAUT: ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2128
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIEEEpor
dc.titleEnergy savings in HVAC systems using discrete model-based predictive controlpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceBrisbane, Australiapor
oaire.citation.endPage1265por
oaire.citation.startPage1258por
oaire.citation.title2012 International Joint Conference on Neural Networks (IJCNN)por
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
576.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: