Logo do repositório
 
A carregar...
Miniatura
Publicação

Deep Learning-Based Gear Pitting Severity Assessment using Acoustic Emission, Vibration and Currents signals

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
14460.pdf735.12 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

A method for gearbox pitting faults severity classification using Deep Learning techniques is reported. The signals are preprocessed for obtaining a 2D time-frequency representation corresponding to the Mel Frequency Cepstral Coefficients. This bi-dimensional representation is the feature space used for classification. A Long Short Term Memory network (LSTM) is used for classifying nine levels of pitting in spur gears. Each signals dataset is used for training and validating a LSTM network. Classification accuracies up to 100 % are obtained during cross-validation with the analyzed signals dataset.

Descrição

Palavras-chave

Fault-Diagnosis Frequency

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

IEEE

Licença CC

Métricas Alternativas