Repository logo
 
Publication

Variable exponent fractional integrals in the limiting case alpha(x)p(x) equivalent to n on quasimetric measure spaces

dc.contributor.authorSamko, Stefan
dc.date.accessioned2021-06-24T11:35:51Z
dc.date.available2021-06-24T11:35:51Z
dc.date.issued2020-03
dc.description.abstractWe show that the fractional operator I-alpha(center dot), of variable order on a bounded open set in Omega, in a quasimetric measure space (X, d, mu) in the case alpha(x)p(x) = n (where n comes from the growth condition on the measure mu), is bounded from the variable exponent Lebesgue space L-p(center dot)(Omega) into BMO(Omega) under certain assumptions on p(x) and alpha(x).
dc.description.sponsorshipRussian Fund of Basic ResearchRussian Foundation for Basic Research (RFBR) [15-01-02732]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1515/gmj-2018-0047
dc.identifier.issn1072-947X
dc.identifier.urihttp://hdl.handle.net/10400.1/16553
dc.language.isoeng
dc.peerreviewedyes
dc.publisherDe Gruyter
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectRiesz potential
dc.subjectVariable exponent spaces
dc.subjectSobolev type theorem
dc.subjectBMO results
dc.subjectQuasimetric measure space
dc.subject.otherMathematics
dc.titleVariable exponent fractional integrals in the limiting case alpha(x)p(x) equivalent to n on quasimetric measure spaces
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage164
oaire.citation.issue1
oaire.citation.startPage157
oaire.citation.titleGeorgian Mathematical Journal
oaire.citation.volume27
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
65022 (1)(1).pdf
Size:
785.81 KB
Format:
Adobe Portable Document Format