Repository logo
 
Publication

MOGA design of temperature and relative humidity models for predictive thermal comfort

dc.contributor.authorRuano, Antonio
dc.contributor.authorFerreira, P. M.
dc.contributor.authorMendes, H.
dc.date.accessioned2013-02-01T12:29:16Z
dc.date.available2013-02-01T12:29:16Z
dc.date.issued2010
dc.date.updated2013-01-26T17:04:26Z
dc.description.abstractThe use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. One of these applications is predictive HVAC control, which aims to maintain thermal comfort while simultaneously minimizing the energy spent, within a specified prediction horizon. Thermal comfort depends on several variables; among them inside temperature and relative humidity are key factors. In this paper the design of predictive neural network models for these two climate variables is discussed. The design approach uses a Multi-Objective Genetic Algorithms (MOGA) to determine the structure of the network, together with an efficient derivative-based estimation algorithm. Simulations with real weather and climate data show that excellent predictive models can be obtained with this methodology.por
dc.identifier.citationRuano, A. E.; Ferreira, P. M.; Mendes, H. MOGA design of temperature and relative humidity models for predictive thermal comfort, Trabalho apresentado em Control Methodologies and Technology for Energy Efficiency, In Proceedings of the IFAC Conference on Control Methodologies and Technology for Energy Efficiency (2010), Vilamoura, 2010.por
dc.identifier.isbn9783902661685
dc.identifier.otherAUT: ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2176
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevier, IFACpor
dc.subjectTemperature predictionpor
dc.subjectRelative humidity predictionpor
dc.subjectNeural network modelspor
dc.subjectMOGApor
dc.titleMOGA design of temperature and relative humidity models for predictive thermal comfortpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceVilamourapor
oaire.citation.endPage121por
oaire.citation.startPage116por
oaire.citation.titleIFAC Conference on Control Methodologies and Technology for Energy Efficiency (2010)por
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ifac-cmtee-2010001-01mar-0116ruan.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: