Repository logo
 
Loading...
Thumbnail Image
Publication

Frequency-domain multiuser detection for CDMA systems

Use this identifier to reference this record.
Name:Description:Size:Format: 
capa.jpg857.22 KBJPEG Download
book_PSilva.pdf2.65 MBAdobe PDF Download

Advisor(s)

Abstract(s)

The design of future broadband wireless systems presents a big challenge, since these systems should be able to cope with severely time-dispersive channels and are expected to provide a wide range of services (which may involve data rates of several tens of Mbit/s) and to have high spectral and power efficiencies. The use of equalization techniques to deal with the channel time-dispersion effects associated to the multipath signal propagation between transmitter and receiver becomes inevitable to compensate the inherent signal distortion levels and ensure good performance. However, implementation complexity and power consumption cannot be too high, especially at the mobile terminals (MT), since low-cost and relatively long live batteries are desirable at these terminals. The optimum receiver structure for time-dispersive channels corresponds to the well-known Viterbi equalizer [1], whose complexity grows exponentially with the channel impulse response length, making it recommendable only for channels whose impulse response spans over just a few symbols. Time-domain equalization techniques are traditionally employed to mitigate channel frequency selectivity effects, leading to a much lower implementation complexity than Viterbi equalizers. Nonlinear equalizers such as decisions feedback equalizers (DFE) [2] can significantly outperform linear equalizers and have a good complexity/performance tradeoff. However, for conventional single carrier (SC) modulations the signal processing complexity (number of arithmetic operations per data symbol) required to mitigate the strong intersymbol interference (ISI) levels inherent to digital transmission over severely time-dispersive channels rapidly becomes prohibitive, especially when conventional time-domain equalization is employed at the receiver side.

Description

Keywords

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

River Publishers

CC License