Repository logo
 
Publication

Simple transitive 2-representations via (Co-)Algebra 1-Morphisms

dc.contributor.authorMackaay, Marco
dc.contributor.authorMazorchuk, Volodymyr
dc.contributor.authorMiemietz, Vanessa
dc.contributor.authorTubbenhauer, Daniel
dc.date.accessioned2020-07-24T10:53:22Z
dc.date.available2020-07-24T10:53:22Z
dc.date.issued2019
dc.description.abstractFor any fiat 2-category C, we show how its simple transitive 2-representations can be constructed using co-algebra 1-morphisms in the injective abelianization of C. Dually, we show that these can also be constructed using algebra 1-morphisms in the projective abelianization of C. We also extend Morita-Takeuchi theory to our setup and work out several examples, including that of Soergel bimodules for dihedral groups, explicitly.
dc.description.sponsorshipSwedish Research CouncilSwedish Research Council
dc.description.sponsorshipKnut and Alice Wallenberg StiftelseKnut & Alice Wallenberg Foundation
dc.description.sponsorshipGoran Gustafsson Stiftelse
dc.description.sponsorshipUppsala University
dc.description.sponsorshipHausdorff Center for Mathematics (HCM) in Bonn
dc.identifier.doi10.1512/iumj.2019.68.7554
dc.identifier.issn0022-2518
dc.identifier.issn1943-5258
dc.identifier.urihttp://hdl.handle.net/10400.1/14484
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIndiana Univ Math Journal
dc.subjectHopf-Algebras
dc.subjectCategories
dc.subjectBimodules
dc.titleSimple transitive 2-representations via (Co-)Algebra 1-Morphisms
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage33
oaire.citation.issue1
oaire.citation.startPage1
oaire.citation.titleIndiana University Mathematics Journal
oaire.citation.volume68
person.familyNameMACKAAIJ
person.givenNameMARCO
person.identifier.ciencia-idF810-F5CB-9F35
person.identifier.orcid0000-0001-9807-6991
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublication62310e63-1319-4bf3-87c8-1f6790d9f190
relation.isAuthorOfPublication.latestForDiscovery62310e63-1319-4bf3-87c8-1f6790d9f190

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
14484.pdf
Size:
395.52 KB
Format:
Adobe Portable Document Format