Logo do repositório
 
A carregar...
Miniatura
Publicação

Computability, noncomputability and undecidability of maximal intervals of IVPs

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
06-GZB-noncompode.pdf213.5 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Let (α, β) ⊆ R denote the maximal interval of existence of solution for the initial-value problem dx dt = f(t, x) x(t0) = x0, where E is an open subset of Rm+1, f is continuous in E and (t0, x0) ∈ E. We show that, under the natural definition of computability from the point of view of applications, there exist initial-value problems with computable f and (t0, x0) whose maximal interval of existence (α, β) is noncomputable. The fact that f may be taken to be analytic shows that this is not a lack of regularity phenomenon. Moreover, we get upper bounds for the “degree of noncomputability” by showing that (α, β) is r.e. (recursively enumerable) open under very mild hypotheses. We also show that the problem of determining whether the maximal interval is bounded or unbounded is in general undecidable.

Descrição

Palavras-chave

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo