Repository logo
 
Publication

Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids

dc.contributor.authorAntontsev, S N
dc.contributor.authorde Oliveira, H. B.
dc.contributor.authorKhompysh, Kh
dc.date.accessioned2020-09-23T08:40:23Z
dc.date.available2020-09-23T08:40:23Z
dc.date.issued2019
dc.description.abstractGeneralized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids are considered in this work. We assume that, in the momentum equation, the diffusion and relaxation terms are described by two distinct power-laws. Moreover, we assume that the momentum equation is perturbed by an extra term, which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. For the associated initial-boundary value problem, we study the existence of weak solutions as well as the large time behavior of the solutions.pt_PT
dc.description.sponsorshipPortuguese Foundation for Science and Technology: UID/MAT/04561/2019pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1088/1742-6596/1268/1/012008pt_PT
dc.identifier.issn1742-6596
dc.identifier.urihttp://hdl.handle.net/10400.1/14738
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIOP Publishingpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectKelvin-Voigtpt_PT
dc.titleExistence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluidspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage012008pt_PT
oaire.citation.titleJournal of Physics: Conference Seriespt_PT
oaire.citation.volume1268pt_PT
person.familyNameBorges de Oliveira
person.givenNameHermenegildo
person.identifier.ciencia-id4A15-7156-6A00
person.identifier.orcid0000-0001-9053-8442
person.identifier.ridF-3186-2014
person.identifier.scopus-author-id7004475473
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6f0df0e9-24bf-43d5-97b3-4a709a59e2b5
relation.isAuthorOfPublication.latestForDiscovery6f0df0e9-24bf-43d5-97b3-4a709a59e2b5

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pdf.pdf
Size:
761.45 KB
Format:
Adobe Portable Document Format