Name: | Description: | Size: | Format: | |
---|---|---|---|---|
401.17 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
The p-Laplacian problem with the exponent of nonlinearity p depending on the solution u itself is considered in this work. Both situations when p(u) is a local quantity or when p(u) is nonlocal are studied here. For the associated boundary-value local problem, we prove the existence of weak solutions by using a singular perturbation technique. We also prove the existence of weak solutions to the nonlocal version of the associated boundary-value problem. The issue of uniqueness for these problems is addressed in this work as well, in particular by working out the uniqueness for a one dimensional local problem and by showing that the uniqueness is easily lost in the nonlocal problem.
Description
Keywords
Citation
Publisher
Springer