Repository logo
 
Publication

Event processing in web of things

datacite.subject.fosEngenharia e Tecnologia::Outras Engenharias e Tecnologiaspt_PT
dc.contributor.advisorCorreia, N.
dc.contributor.authorMazayev, Andriy
dc.date.accessioned2022-10-26T09:59:53Z
dc.date.available2022-10-26T09:59:53Z
dc.date.issued2022-05-30
dc.description.abstractThe incoming digital revolution has the potential to drastically improve our productivity, reduce operational costs and improve the quality of the products. However, the realization of these promises requires the convergence of technologies — from edge computing to cloud, artificial intelligence, and the Internet of Things — blurring the lines between the physical and digital worlds. Although these technologies evolved independently over time, they are increasingly becoming intertwined. Their convergence will create an unprecedented level of automation, achieved via massive machine-to-machine interactions whose cornerstone are event processing tasks. This thesis explores the intersection of these technologies by making an in-depth analysis of their role in the life-cycle of event processing tasks, including their creation, placement and execution. First, it surveys currently existing Web standards, Internet drafts, and design patterns that are used in the creation of cloud-based event processing. Then, it investigates the reasons for event processing to start shifting towards the edge, alongside with the standards that are necessary for a smooth transition to occur. Finally, this work proposes the use of deep reinforcement learning methods for the placement and distribution of event processing tasks at the edge. Obtained results show that the proposed neural-based event placement method is capable of obtaining (near) optimal solutions in several scenarios and provide hints about future research directions.pt_PT
dc.description.abstractA nova revolução digital promete melhorar drasticamente a nossa produtividade, reduzir os custos operacionais e melhorar a qualidade dos produtos. A concretizac¸ ˜ao dessas promessas requer a convergˆencia de tecnologias – desde edge computing à cloud, inteligência artificial e Internet das coisas (IoT) – atenuando a linha que separa o mundo físico do digital. Embora as quatro tecnologias mencionadas tenham evoluído de forma independente ao longo do tempo, atualmente elas estão cada vez mais interligadas. A convergência destas tecnologias irá criar um nível de automatização sem precedentes.pt_PT
dc.description.sponsorshipThe research published in this work was supported by the Portuguese Foundation for Science and Technology (FCT) through CEOT (Center for Electronic, Optoelectronic and Telecommunications) funding (UID/MULTI/00631/2020) and by FCT Ph.D grant to Andriy Mazayev (SFRH/BD/138836/2018).pt_PT
dc.identifier.tid101707169pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.1/18431
dc.language.isoengpt_PT
dc.relationEdge assisted IoT orchestration
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPadrões da webpt_PT
dc.subjectInternet das coisaspt_PT
dc.subjectWeb das coisaspt_PT
dc.subjectProcessamento de eventospt_PT
dc.subjectEdge computingpt_PT
dc.subjectBalanceamento de cargapt_PT
dc.subjectColocação de recursospt_PT
dc.subjectRede neuronaispt_PT
dc.subjectDeep reinforcement learningpt_PT
dc.titleEvent processing in web of thingspt_PT
dc.typedoctoral thesis
dspace.entity.typePublication
oaire.awardTitleEdge assisted IoT orchestration
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F138836%2F2018/PT
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typedoctoralThesispt_PT
relation.isProjectOfPublication57ea9449-62b9-420c-bdf2-ddb4a2ae270e
relation.isProjectOfPublication.latestForDiscovery57ea9449-62b9-420c-bdf2-ddb4a2ae270e
thesis.degree.grantorUniversidade do Algarve. Faculdade de Ciências e Tecnologia
thesis.degree.levelDoutor
thesis.degree.nameDoutoramento em Engenharia Informáticapt_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: