Repository logo
 
Publication

Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping

dc.contributor.authorAntontsev, S. N.
dc.contributor.authorde Oliveira, H.B.
dc.contributor.authorKhompysh, Kh.
dc.date.accessioned2020-07-24T10:52:19Z
dc.date.available2020-07-24T10:52:19Z
dc.date.issued2019-05
dc.description.abstractThe purpose of this work is the analysis of the existence and uniqueness of weak solutions to a Kelvin-Voigt problem wherein the viscous and relaxation parts of the stress tensor are given by distinct power-laws. We assume that the viscous and relaxation terms may be fully anisotropic and that the momentum equation is perturbed by a damping term which may also be fully anisotropic. In the particular case of considering this problem with a linear and isotropic relaxation term, we prove the existence of global and local weak solutions. The uniqueness of weak solutions is established in this case as well. For the full anisotropic problem, we show how all the anisotropic exponents of nonlinearity and all anisotropic coefficients must interact in order to be established global and local in time a priori estimates. (C) 2019 Elsevier Inc. All rights reserved.
dc.description.sponsorshipRussian Federation government, Russia [14.W03.31.0002]
dc.description.sponsorshipPortuguese Foundation for Science and Technology (FCT), PortugalPortuguese Foundation for Science and Technology [UID/MAT/04561/2013]
dc.description.sponsorshipPortuguese Foundation for Science and Technology (FCT)Portuguese Foundation for Science and Technology [SFRH/BSAB/135242/2017]
dc.description.sponsorshipMinistry of Science and Education of the Republic of Kazakhstan (MES RK), Kazakhstan [AP05132041]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.jmaa.2019.01.011
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.urihttp://hdl.handle.net/10400.1/14345
dc.language.isoeng
dc.peerreviewedyes
dc.publisherAcademic Press Inc Elsevier Science
dc.subjectNavier-stokes equations
dc.subjectP-laplacian
dc.subjectExistence
dc.titleKelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F04561%2F2013/PT
oaire.citation.endPage1154
oaire.citation.issue2
oaire.citation.startPage1122
oaire.citation.titleJournal of Mathematical Analysis and Applications
oaire.citation.volume473
oaire.fundingStream5876
person.familyNameBorges de Oliveira
person.givenNameHermenegildo
person.identifier.ciencia-id4A15-7156-6A00
person.identifier.orcid0000-0001-9053-8442
person.identifier.ridF-3186-2014
person.identifier.scopus-author-id7004475473
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication6f0df0e9-24bf-43d5-97b3-4a709a59e2b5
relation.isAuthorOfPublication.latestForDiscovery6f0df0e9-24bf-43d5-97b3-4a709a59e2b5
relation.isProjectOfPublication8284f3df-79f6-4b59-a050-6a11daeb1f8c
relation.isProjectOfPublication.latestForDiscovery8284f3df-79f6-4b59-a050-6a11daeb1f8c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0022247X19300319-main.pdf
Size:
678.53 KB
Format:
Adobe Portable Document Format