Name: | Description: | Size: | Format: | |
---|---|---|---|---|
219.26 KB | Adobe PDF |
Advisor(s)
Abstract(s)
The effect of Na+ and K+ on growth and thermal death of Debaryomyces hansenii and Saccharomyces cerevisiae were compared under stress conditions as those commonly found in food environments. At the supraoptimal temperature of 34 degrees C both cations at concentrations of 0.5 M stimulated growth of D. hansenii, while K+ had no effect and Na+ inhibited growth of S. cerevisiae. At 8 degrees C, close to the minimum temperature for growth in both species, both cations inhibited both yeasts, this effect being more pronounced with Na+ in S. cerevisiae. At extreme pH values (7.8 and 3.5) both cations at concentrations of 0.25 M stimulated B. hansenii while Na+ inhibited S. cerevisiae. K+ inhibited this yeast at pH 3.5. Thermal inactivation rates, measured at 38 degrees C in D. hansenii and at 48 degrees C in S. cerevisiae, decreased in the presence of both cations. This protective effect could be observed in a wider range of concentrations in D. hansenii. These results call the attention to the fact that not all yeasts have the same behaviour on what concerns synergy or antagonism of salt together with other stress factors and should be taken into consideration in the establishment of food preservation procedures. (C) 2000 Elsevier Science B.V. All rights reserved.
Description
Keywords
Citation
Publisher
Elsevier