Logo do repositório
 
A carregar...
Miniatura
Publicação

Evolutionary multiobjective design of radial basis function networks for greenhouse environmental control

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
04459.pdf212.85 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this work a multiobjective genetic algorithm is applied to the identi cation of radial basis function neural network coupled models of humidity and temperature in a greenhouse. Models are built as one-step-ahead predictors and then used iteratively to produce long term predictions. The number of neurons and input terms used in both models de ne the search space. Two combinations of performance and complexity criteria are used to steer the selection of model structures, resulting in distinct sets of solutions. It is shown that minimisation of one-step-ahead prediction errors negatively in uences long term prediction performance. Long term prediction results are presented for a pair of models selected from sets of models obtained in the experiments.

Descrição

Palavras-chave

Genetic Algorithms Greenhouse Environmental Control Radial Basis Functions Temperature Prediction Humidity Prediction

Contexto Educativo

Citação

Ferreira, P. M.; Ruano, A. E.; Fonseca, C. M. Evolutionary multiobjective design of radial basis function networks for greenhouse environmental control, Trabalho apresentado em World Congress, In Proceedings of the 16th IFAC World Congress, 2005, Prague, 2005.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

IFAC, Elsevier

Licença CC