Repository logo
 
Publication

Substructural local search in discrete estimation of distribution algorithms

dc.contributor.advisorLobo, Fernando
dc.contributor.authorLima, Cláudio Miguel Faleiro de
dc.date.accessioned2011-09-07T16:04:47Z
dc.date.available2011-09-07T16:04:47Z
dc.date.issued2009
dc.descriptionTese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009por
dc.descriptionSFRH/BD/16980/2004por
dc.description.abstractThe last decade has seen the rise and consolidation of a new trend of stochastic optimizers known as estimation of distribution algorithms (EDAs). In essence, EDAs build probabilistic models of promising solutions and sample from the corresponding probability distributions to obtain new solutions. This approach has brought a new view to evolutionary computation because, while solving a given problem with an EDA, the user has access to a set of models that reveal probabilistic dependencies between variables, an important source of information about the problem. This dissertation proposes the integration of substructural local search (SLS) in EDAs to speedup the convergence to optimal solutions. Substructural neighborhoods are de ned by the structure of the probabilistic models used in EDAs, generating adaptive neighborhoods capable of automatic discovery and exploitation of problem regularities. Speci cally, the thesis focuses on the extended compact genetic algorithm and the Bayesian optimization algorithm. The utility of SLS in EDAs is investigated for a number of boundedly di cult problems with modularity, overlapping, and hierarchy, while considering important aspects such as scaling and noise. The results show that SLS can substantially reduce the number of function evaluations required to solve some of these problems. More importantly, the speedups obtained can scale up to the square root of the problem size O( p `).eng
dc.description.sponsorshipFundação para a Ciência e Tecnologia (FCT)por
dc.formatapplication/pdfpor
dc.identifier.other004.021 LIM*Sub Cave
dc.identifier.tid101188889
dc.identifier.urihttp://hdl.handle.net/10400.1/471
dc.language.isoengpor
dc.relationEfficiency enhancement techniques for probabilistic model building genetic algorithms
dc.subjectTesespor
dc.subjectAlgoritmos genéticospor
dc.subjectAlgoritmos de estimação da distribuiçãopor
dc.titleSubstructural local search in discrete estimation of distribution algorithmspor
dc.typedoctoral thesis
dspace.entity.typePublication
oaire.awardTitleEfficiency enhancement techniques for probabilistic model building genetic algorithms
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FEIA%2F67776%2F2006/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F16980%2F2004/PT
oaire.fundingStream3599-PPCDT
oaire.fundingStreamSFRH
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspor
rcaap.typedoctoralThesispor
relation.isProjectOfPublication22c6bdd9-deae-4b23-8132-7d9e0e4e52b1
relation.isProjectOfPublicationc43e5eee-fd6a-45c5-825c-32b735c18289
relation.isProjectOfPublication.latestForDiscovery22c6bdd9-deae-4b23-8132-7d9e0e4e52b1
thesis.degree.grantorUniversidade do Algarvepor
thesis.degree.levelDoutorpor
thesis.degree.nameDoutoramento em Engenharia Eléctrónica e Computação. Especialização em Cências de Computaçãopor

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ClaudioLima-PhDThesis-2009.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format

Collections