Logo do repositório
 
A carregar...
Miniatura
Publicação

Algebraic bethe ansatz for the trigonometric sℓ(2) Gaudin model with triangular boundary

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
symmetry-12-00352-v2.pdf365.07 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this paper we deal with the trigonometric Gaudin model, generalized using a nontrivial triangular reflection matrix (corresponding to non-periodic boundary conditions in the case of anisotropic XXZ Heisenberg spin-chain). In order to obtain the generating function of the Gaudin Hamiltonians with boundary terms we follow an approach based on Sklyanin’s derivation in the periodic case. Once we have the generating function, we obtain the corresponding Gaudin Hamiltonians with boundary terms by taking its residues at the poles. As the main result, we find the generic form of the Bethe vectors such that the off-shell action of the generating function becomes exceedingly compact and simple. In this way—by obtaining Bethe equations and the spectrum of the generating function—we fully implement the algebraic Bethe ansatz for the generalized trigonometric Gaudin model.

Descrição

Palavras-chave

Gaudin model Algebraic bethe ansatz Non-unitary r-matrix

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

MDPI

Licença CC

Métricas Alternativas