Repository logo
 
Publication

Algebraic bethe ansatz for the trigonometric sℓ(2) Gaudin model with triangular boundary

dc.contributor.authorManojlovic, Nenad
dc.contributor.authorSalom, Igor
dc.date.accessioned2020-04-30T10:49:22Z
dc.date.available2020-04-30T10:49:22Z
dc.date.issued2020
dc.description.abstractIn this paper we deal with the trigonometric Gaudin model, generalized using a nontrivial triangular reflection matrix (corresponding to non-periodic boundary conditions in the case of anisotropic XXZ Heisenberg spin-chain). In order to obtain the generating function of the Gaudin Hamiltonians with boundary terms we follow an approach based on Sklyanin’s derivation in the periodic case. Once we have the generating function, we obtain the corresponding Gaudin Hamiltonians with boundary terms by taking its residues at the poles. As the main result, we find the generic form of the Bethe vectors such that the off-shell action of the generating function becomes exceedingly compact and simple. In this way—by obtaining Bethe equations and the spectrum of the generating function—we fully implement the algebraic Bethe ansatz for the generalized trigonometric Gaudin model.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/sym12030352pt_PT
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10400.1/13816
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectGaudin modelpt_PT
dc.subjectAlgebraic bethe ansatzpt_PT
dc.subjectNon-unitary r-matrixpt_PT
dc.titleAlgebraic bethe ansatz for the trigonometric sℓ(2) Gaudin model with triangular boundarypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue3pt_PT
oaire.citation.startPage352pt_PT
oaire.citation.titleSymmetrypt_PT
oaire.citation.volume12pt_PT
person.familyNameManojlović
person.givenNameNenad
person.identifier220839
person.identifier.ciencia-idE017-D84B-6794
person.identifier.orcid0000-0002-1054-3063
person.identifier.scopus-author-id7004217507
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationc9980a48-7be4-4c89-a3bf-0ea6da8c0d35
relation.isAuthorOfPublication.latestForDiscoveryc9980a48-7be4-4c89-a3bf-0ea6da8c0d35

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
symmetry-12-00352-v2.pdf
Size:
365.07 KB
Format:
Adobe Portable Document Format