Repository logo
 
Publication

Chimpanzee face recognition from videos in the wild using deep learning

dc.contributor.authorSchofield, Daniel
dc.contributor.authorNagrani, Arsha
dc.contributor.authorZisserman, Andrew
dc.contributor.authorHayashi, Misato
dc.contributor.authorMatsuzawa, Tetsuro
dc.contributor.authorBiro, Dora
dc.contributor.authorCarvalho, Susana
dc.date.accessioned2019-11-13T12:15:29Z
dc.date.available2019-11-13T12:15:29Z
dc.date.issued2019
dc.description.abstractVideo recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.pt_PT
dc.description.sponsorshipAgência financiadora Número do subsídio Engineering & Physical Sciences Research Council (EPSRC) EP/M013774/1 Cooperative Research Program of Primate Research Institute, Kyoto University Google Clarendon Fund Boise Trust Fund Wolfson College, University of Oxford Leverhulme Trust PLP-2016-114 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science 16H06283 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science LGP-U04pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1126/sciadv.aaw0736
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/10400.1/12879
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAmerican Association for the Advancement of Sciencept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.titleChimpanzee face recognition from videos in the wild using deep learningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue9pt_PT
oaire.citation.startPageeaaw0736pt_PT
oaire.citation.titleScience Advancespt_PT
oaire.citation.volume5pt_PT
person.familyNameCarvalho
person.givenNameSusana
person.identifier.ciencia-idC91A-A704-6E70
person.identifier.orcid0000-0003-4542-3720
person.identifier.scopus-author-id23977799600
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication1f6a7971-6b67-4f1a-9b1d-f18729d02e9e
relation.isAuthorOfPublication.latestForDiscovery1f6a7971-6b67-4f1a-9b1d-f18729d02e9e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eaaw0736.full.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: