Repository logo
 
Publication

Boundedness of the maximal operator and its commutators on vanishing generalized Orlicz-morrey spaces

dc.contributor.authorDeringoz, Fatih
dc.contributor.authorGuliyev, Vagif S.
dc.contributor.authorSamko, Stefan
dc.date.accessioned2018-12-07T14:58:25Z
dc.date.available2018-12-07T14:58:25Z
dc.date.issued2015
dc.description.abstractWe prove the boundedness of the Hardy-Littlewood maximal operator and their commutators with BMO-coefficients in vanishing generalized Orlicz-Morrey spaces VM Phi,phi(R-n) including weak versions of these spaces. The main advance in comparison with the existing results is that we manage to obtain conditions for the boundedness not in integral terms but in less restrictive terms of supremal operators involving the Young function Phi(u) and the function phi(x, r) defining the space. No kind of monotonicity condition on phi(x, r) in r is imposed.
dc.description.sponsorshipAhi Evran University [PYO.FEN.4003.13.003, PYO.FEN.4001.14.017]; Science Development Foundation under Republic of Azerbaijan [EIF-2013-9(15)-46/10/1]; Russian Fund of Basic Research [15-01-02732]
dc.identifier.doi10.5186/aasfm.2015.4029
dc.identifier.issn1239-629X
dc.identifier.issn1798-2383
dc.identifier.urihttp://hdl.handle.net/10400.1/12016
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSuomalainen Tiedeakatemia
dc.subjectSingular-integrals
dc.subjectHardy-spaces
dc.subjectInequalities
dc.subjectEquations
dc.titleBoundedness of the maximal operator and its commutators on vanishing generalized Orlicz-morrey spaces
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage549
oaire.citation.issue2
oaire.citation.startPage535
oaire.citation.titleAnnales Academiae Scientiarum Fennicae. Mathematica
oaire.citation.volume40
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12016.pdf
Size:
213.03 KB
Format:
Adobe Portable Document Format