Repository logo
 
Publication

Weighted Sobolev theorem in Lebesgue spaces with variable exponent

dc.contributor.authorSamko, N. G.
dc.contributor.authorSamko, Stefan
dc.contributor.authorVakulov, B. G.
dc.date.accessioned2018-12-07T14:58:01Z
dc.date.available2018-12-07T14:58:01Z
dc.date.issued2007-11
dc.description.abstractFor the Riesz potential operator I-alpha there are proved weighted estimates [GRAPHICS] within the framework of weighted Lebesgue spaces L (P(center dot)) (Omega, omega) with variable exponent. In case Omega is a bounded domain, the order alpha = alpha (x) is allowed to be variable as well. The weight functions are radial type functions "fixed" to a finite point and/or to infinity and have a typical feature of Muckenhoupt-Wheeden weights: they may oscillate between two power functions. Conditions on weights are given in terms of their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential operators on the unit sphere S-n subset of R-n. (c) 2007 Elsevier Inc. All rights reserved.
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.jmaa.2007.01.091
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.urihttp://hdl.handle.net/10400.1/11813
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSpherical potential-operators
dc.subjectFractional integrals
dc.subjectMaximal-function
dc.subjectConvolution
dc.titleWeighted Sobolev theorem in Lebesgue spaces with variable exponent
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage583
oaire.citation.issue1
oaire.citation.startPage560
oaire.citation.titleJournal of Mathematical Analysis and Applications
oaire.citation.volume335
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0022247X0700145X-main.pdf
Size:
244.6 KB
Format:
Adobe Portable Document Format