Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.87 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A concessão de crédito implica que as empresas incorram em risco de crédito, resultantes
do incumprimento das datas de pagamento previamente acordadas. As empresas acabam
por gerar dificuldades financeiras sempre que consentem que os seus clientes dilatem os
prazos de pagamento. Este risco pode, no entanto, variar dependendo da robustez da
política de crédito, tipo de cliente e o tipo de produtos ou serviços prestados.
Assim, é essencial que as empresas grossistas apresentem uma eficiente gestão e análise
do risco de crédito de modo a diminuírem os possíveis incumprimentos da sua carteira de
clientes.
Neste sentido, o objetivo geral desta dissertação é analisar o risco dos grossistas do ramo
alimentar na atribuição de crédito a empresas do canal HORECA. Para isso, procurou-se
analisar uma base de dados de empresas grossistas com informações económicofinanceiras,
para identificar os fatores de risco na concessão de crédito. Com recurso ao
modelo HJ-biplot (Galindo, 1986), foi efetuada uma análise multivariada, que permitiu
estudar as relações entre as variáveis, entre os indivíduos e entre as variáveis e os
indivíduos, cumprindo assim o propósito do estudo.
Face ao objetivo geral desta dissertação, constata-se que nos três segmentos estudados
existe a possibilidade de atribuição de crédito na grande maioria das empresas em cada
sector, clusters classificados a ‘’verde’’. Existem também empresas nos três grupos que
não é aconselhável a atribuição de crédito, clusters classificados a ‘’vermelho’’, essas
empresas apresentam valores baixos nos indicadores estudados, sendo, no entanto, em
menor quantidade. De uma forma intermédia, encontrou-se também a classificação a
‘’amarelo’’, que são empresas que necessitam de uma análise mais detalhada por parte
dos analistas.
Granting credit implies that companies incur in credit risk by not meeting previously agreed payment dates. Companies end up creating financial difficulties whenever they allow their customers to extend payment deadlines. This risk, however, may vary depending on the strength of the credit policy, type of customer and the type of products or services provided. Thus, it is essential that wholesale companies have an efficient management and analysis of credit risk in order to reduce possible defaults in their customer portfolio. In this sense, the general goal of this dissertation is to analyze the risk of food wholesalers in the allocation of credit to companies in the HORECA channel. For this purpose, a database of wholesalers with economic and financial information was analysed to identify the risk factors in granting credit. Using the HJ-biplot model (Galindo, 1986), a multivariate analysis was carried out, which allowed studying the relationships among variables, among individuals and between variables and individuals, thus fulfilling the purpose of the study. In view of the general goal of this dissertation, it can be seen that in the three segments studied there is the possibility of granting credit in the vast majority of companies in each sector, clusters classified as ''green''. There are also companies in the three groups where it is not advisable to grant credit, clusters classified as "red". In an intermediate way, we also found the classification to "yellow", which are companies that need a more detailed analysis by analysts.
Granting credit implies that companies incur in credit risk by not meeting previously agreed payment dates. Companies end up creating financial difficulties whenever they allow their customers to extend payment deadlines. This risk, however, may vary depending on the strength of the credit policy, type of customer and the type of products or services provided. Thus, it is essential that wholesale companies have an efficient management and analysis of credit risk in order to reduce possible defaults in their customer portfolio. In this sense, the general goal of this dissertation is to analyze the risk of food wholesalers in the allocation of credit to companies in the HORECA channel. For this purpose, a database of wholesalers with economic and financial information was analysed to identify the risk factors in granting credit. Using the HJ-biplot model (Galindo, 1986), a multivariate analysis was carried out, which allowed studying the relationships among variables, among individuals and between variables and individuals, thus fulfilling the purpose of the study. In view of the general goal of this dissertation, it can be seen that in the three segments studied there is the possibility of granting credit in the vast majority of companies in each sector, clusters classified as ''green''. There are also companies in the three groups where it is not advisable to grant credit, clusters classified as "red". In an intermediate way, we also found the classification to "yellow", which are companies that need a more detailed analysis by analysts.
Description
Keywords
Risco de crédito Política de crédito Concessão de crédito HJ-biplot