Repository logo
 
Publication

Classifying polish in use-wear analysis with convolutional neural networks

dc.contributor.authorEleftheriadou, Anastasia
dc.contributor.authorDjellal, Youssef
dc.contributor.authorMcPherron, Shannon
dc.contributor.authorMarreiros, Joao
dc.date.accessioned2025-11-20T13:46:24Z
dc.date.available2025-11-20T13:46:24Z
dc.date.issued2025-10-22
dc.description.abstractLithic use-wear analysis examines micro- and macroscopic traces on tool surfaces resulting from human use and post-depositional processes. Polish, formed through surface abrasion with different materials, is a key diagnostic feature that is increasingly analyzed using machine learning to enhance automation and standardization. However, further research is needed to explore whether deep learning approaches, in particular, can be effectively applied to use-wear analysis and to determine the optimal surface area size (e.g., patch size and microscope objectives) and model architecture (custom vs. pre-trained) for achieving the best results. This study employs convolutional neural networks (CNNs) to classify experimental polish based on contact material (wood, hide, bone) and use intensity, while also assessing optimal imaging and analytical parameters. The results of this exploratory study suggest that CNNs may effectively identify polish from bone and hide but perform less effectively with wood. The models also successfully distinguish between polish formed by short- and long-term use. Custom models outperformed pre-trained ones, particularly when using images that captured smaller areas of the tool’s surface, suggesting that bigger surface areas may lack the necessary information for optimal results. These findings underscore the need to expand use-wear datasets in terms of size and variability and optimize CNN architectures and workflows.eng
dc.identifier.doi10.1038/s41598-025-18179-4
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10400.1/27899
dc.language.isoeng
dc.peerreviewedyes
dc.publisherNature Research
dc.relationInterdisciplinary Center for Archaeology and Evolution of Human Behavior
dc.relation.ispartofScientific Reports
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLithic use-wear analysis
dc.subjectPolish classification
dc.subjectConvolutional neural networks
dc.subjectExperimental archaeology
dc.subjectDeep learning
dc.titleClassifying polish in use-wear analysis with convolutional neural networkseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInterdisciplinary Center for Archaeology and Evolution of Human Behavior
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04211%2F2020/PT
oaire.citation.issue1
oaire.citation.startPage36834
oaire.citation.titleScientific Reports
oaire.citation.volume15
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameEleftheriadou
person.familyNameDjellal
person.familyNameMcPherron
person.familyNameMarreiros
person.givenNameAnastasia
person.givenNameYoussef
person.givenNameShannon
person.givenNameJoao
person.identifier.ciencia-idAB15-45C3-D335
person.identifier.ciencia-id6A10-F340-45CF
person.identifier.orcid0000-0002-8649-3752
person.identifier.orcid0000-0003-0452-1295
person.identifier.orcid0000-0002-2063-468X
person.identifier.orcid0000-0002-3399-8765
person.identifier.ridC-9958-2010
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationd461ee08-6938-4265-9bac-35dda0809061
relation.isAuthorOfPublication1926ee10-970e-45eb-8a4b-04d1ec78880b
relation.isAuthorOfPublication0d20826a-f03e-446a-8c32-98fd21cc0417
relation.isAuthorOfPublication7175a620-3c8f-4d97-bac3-cb2356f3f111
relation.isAuthorOfPublication.latestForDiscoveryd461ee08-6938-4265-9bac-35dda0809061
relation.isProjectOfPublication7df6126b-8b99-46fd-8f38-a975c111c0b3
relation.isProjectOfPublication.latestForDiscovery7df6126b-8b99-46fd-8f38-a975c111c0b3

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-025-18179-4.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: