Repository logo
 
Publication

A Multi-Step ensemble approach for energy community Day-Ahead Net Load point and probabilistic forecasting

dc.contributor.authorRuano, Maria
dc.contributor.authorRuano, Antonio
dc.date.accessioned2024-02-20T12:53:34Z
dc.date.available2024-02-20T12:53:34Z
dc.date.issued2024-01-31
dc.date.updated2024-02-09T15:06:55Z
dc.description.abstractThe incorporation of renewable energy systems in the world energy system has been steadily increasing during the last few years. In terms of the building sector, the usual consumers are becoming increasingly prosumers, and the trend is that communities of energy, whose households share produced electricity, will increase in number in the future. Another observed tendency is that the aggregator (the entity that manages the community) trades the net community energy in public energy markets. To accomplish economically good transactions, accurate and reliable forecasts of the day-ahead net energy community must be available. These can be obtained using an ensemble of multi-step shallow artificial neural networks, with prediction intervals obtained by the covariance algorithm. Using real data obtained from a small energy community of four houses located in the southern region of Portugal, one can verify that the deterministic and probabilistic performance of the proposed approach is at least similar, typically better than using complex, deep models.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationEnergies 17 (3): 696 (2024)pt_PT
dc.identifier.doi10.3390/en17030696pt_PT
dc.identifier.eissn1996-1073
dc.identifier.urihttp://hdl.handle.net/10400.1/20423
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMulti-objective genetic algorithmspt_PT
dc.subjectNeural networkspt_PT
dc.subjectForecasting modelspt_PT
dc.subjectEnsemble modelspt_PT
dc.subjectPrediction intervalspt_PT
dc.subjectProbabilistic forecastingpt_PT
dc.subjectDay-ahead energy marketspt_PT
dc.titleA Multi-Step ensemble approach for energy community Day-Ahead Net Load point and probabilistic forecastingpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue3pt_PT
oaire.citation.startPage696pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume17pt_PT
person.familyNameRuano
person.familyNameRuano
person.givenNameMaria
person.givenNameAntonio
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0002-0014-9257
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridA-8321-2011
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004483805
person.identifier.scopus-author-id7004284159
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery61fc8492-d73f-46ca-a3a3-4cd762a784e6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
energies-17-00696.pdf
Size:
27.48 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: