Logo do repositório
 
A carregar...
Miniatura
Publicação

Trihedral Soergel bimodules

Utilize este identificador para referenciar este registo.

Orientador(es)

Resumo(s)

The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum $\mathfrak{sl}_2$ representation category. It also establishes a precise relation between the simple transitive $2$-representations of both monoidal categories, which are indexed by bicolored $\mathsf{ADE}$ Dynkin diagrams. Using the quantum Satake correspondence between affine $\mathsf{A}_{2}$ Soergel bimodules and the semisimple quotient of the quantum $\mathfrak{sl}_3$ representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive $2$-representations corresponding to tricolored generalized $\mathsf{ADE}$ Dynkin diagrams.

Descrição

Palavras-chave

2-representation theory Quantum groups and their fusion categories Hecke algebras Soergel bimodules Zigzag algebras

Contexto Educativo

Citação

Projetos de investigação

Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo