Logo do repositório
 
A carregar...
Miniatura
Publicação

An hybrid training method for B-spline neural networks

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
cabrita 2005.pdf1.32 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Current and past research has brought up new views related to the optimization of neural networks. For a fixed structure, second order methods are seen as the most promising. From previous works we have shown how second order methods are of easy applicability to a neural network. Namely, we have proved how the Levenberg-Marquard possesses not only better convergence but how it can assure the convergence to a local minima. However, as any gradient-based method, the results obtained depend on the startup point. In this work, a reformulated Evolutionary algorithm - the Bacterial Programming for Levenberg-Marquardt is proposed, as an heuristic which can be used to determine the most suitable starting points, therefore achieving, in most cases, the global optimum.

Descrição

Palavras-chave

Levenberg-Marquard algorithm B-Splines Genetic Programming Bacterial Algorithm Local and global minima

Contexto Educativo

Citação

Cabrita, C.; Botzheim, J.; Ruano, A. E. B.; Koczy, L.T. An hybrid training method for B-spline neural networks, Trabalho apresentado em IEEE International Workshop on Intelligent Signal Processing, 2005. In Proceedings of the IEEE International Workshop on Intelligent Signal Processing, 2005. University of Algarve Portugal, 2005.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

IEEE

Licença CC