Repository logo
 
Publication

Comparison of neural models, off-line and on-line learning algorithms for a benchmark problem

dc.contributor.authorRuano, Antonio
dc.date.accessioned2013-02-11T10:51:32Z
dc.date.available2013-02-11T10:51:32Z
dc.date.issued2003
dc.date.updated2013-01-27T21:07:59Z
dc.description.abstractThis papcr comparcs thc application of diffcrcnt ncural modcls-multilaycr pcrccptrons, radial basis functions and B-splincs - for a bcnchmark problem, and illustrates the applicability of a common learning algorithm for all models considered. The learning algorithm is employed both for off-line training and for on-line model adaptation. In the latter case. a sliding window of past learning data is employed.por
dc.identifier.citationRuano, A. E. B. Comparison of Neural Models, Off-line and On-line Learning Algorithms for a Benchmark Problem, In Artificial Neural Nets Problem Solving Methods, 457-464, ISBN: 978-3-540-40211-4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.por
dc.identifier.doihttp://dx.doi.org/10.1007/3-540-44869-1_58
dc.identifier.isbn978-3-540-40211-4
dc.identifier.otherAUT: ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2290
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer Berlin Heidelbergpor
dc.titleComparison of neural models, off-line and on-line learning algorithms for a benchmark problempor
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage464por
oaire.citation.startPage457por
oaire.citation.titleArtificial Neural Nets Problem Solving Methodspor
oaire.citation.titleArtificial Neural Nets Problem Solving Methods. 7th International Work COnference on Artificial and Natural Neural Networks
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typebookPartpor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
fulltext.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: