Repository logo
 
Publication

Non-destructive soluble solids content determination for ‘Rocha’ Pear Based on VIS-SWNIR spectroscopy under ‘Real World’ sorting facility conditions

dc.contributor.authorPassos, Dário
dc.contributor.authorRodrigues, Daniela
dc.contributor.authorCavaco, Ana M.
dc.contributor.authorAntunes, Maria Dulce
dc.contributor.authorGuerra, Rui Manuel Farinha das Neves
dc.date.accessioned2020-03-13T14:21:31Z
dc.date.available2020-03-13T14:21:31Z
dc.date.issued2019
dc.description.abstractIn this paper we report a method to determine the soluble solids content (SSC) of 'Rocha' pear (Pyrus communis L. cv. Rocha) based on their short-wave NIR reflectance spectra (500-1100 nm) measured in conditions similar to those found in packinghouse fruit sorting facilities. We obtained 3300 reflectance spectra from pears acquired from different lots, producers and with diverse storage times and ripening stages. The macroscopic properties of the pears, such as size, temperature and SSC were measured under controlled laboratory conditions. For the spectral analysis, we implemented a computational pipeline that incorporates multiple pre-processing techniques including a feature selection procedure, various multivariate regression models and three different validation strategies. This benchmark allowed us to find the best model/preproccesing procedure for SSC prediction from our data. From the several calibration models tested, we have found that Support Vector Machines provides the best predictions metrics with an RMSEP of around 0.82 ∘ Brix and 1.09 ∘ Brix for internal and external validation strategies respectively. The latter validation was implemented to assess the prediction accuracy of this calibration method under more 'real world-like' conditions. We also show that incorporating information about the fruit temperature and size to the calibration models improves SSC predictability. Our results indicate that the methodology presented here could be implemented in existing packinghouse facilities for single fruit SSC characterization.pt_PT
dc.description.sponsorshipFunding Agency CEOT strategic project UID/Multi/00631/2019 project OtiCalFrut ALG-01-0247-FEDER-033652 Ideias em Caixa 2010, CAIXA GERAL DE DEPOSITOS Fundacao para a Ciencia e a Tecnologia (Ciencia)pt_PT
dc.description.sponsorshipALG-01-0247-FEDER-033652; 033652
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doihttps://doi.org/10.3390/s19235165pt_PT
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10400.1/13591
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationCenter for Electronics, Optoelectronics and Telecommunications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectVIS-SWNIR spectroscopypt_PT
dc.subjectDiffuse reflectancept_PT
dc.subjectSoluble solids contentpt_PT
dc.subjectMachine learningpt_PT
dc.subjectFruit's internal qualitypt_PT
dc.subjectNon-destructive measurementspt_PT
dc.titleNon-destructive soluble solids content determination for ‘Rocha’ Pear Based on VIS-SWNIR spectroscopy under ‘Real World’ sorting facility conditionspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Electronics, Optoelectronics and Telecommunications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMulti%2F00631%2F2019/PT
oaire.citation.issue23pt_PT
oaire.citation.startPage5165pt_PT
oaire.citation.titleSensorspt_PT
oaire.citation.volume19pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNamePassos
person.familyNameRodrigues
person.familyNameCavaco Guerra
person.familyNameAntunes
person.familyNameGuerra
person.givenNameDário
person.givenNameDaniela
person.givenNameAna Margarida
person.givenNameMaria Dulce
person.givenNameRui
person.identifier324764
person.identifierC-1285-2012
person.identifier177556
person.identifier.ciencia-id3D13-C289-0595
person.identifier.ciencia-idC91E-B434-E327
person.identifier.ciencia-idC11B-9B05-217E
person.identifier.ciencia-id3D16-5067-D6BB
person.identifier.orcid0000-0002-5345-5119
person.identifier.orcid0000-0003-3659-099X
person.identifier.orcid0000-0003-2708-5991
person.identifier.orcid0000-0002-8913-6136
person.identifier.orcid0000-0002-8642-5792
person.identifier.ridA-4683-2012
person.identifier.scopus-author-id21743737200
person.identifier.scopus-author-id6602899707
person.identifier.scopus-author-id7102645075
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication30c8500a-c12b-47c3-845e-9b64957cf233
relation.isAuthorOfPublicationc5ca43cb-937b-4b90-80b6-85c68dac3d96
relation.isAuthorOfPublication18ad736f-b1f3-4a19-9636-e7a80248cf94
relation.isAuthorOfPublication7947cc50-4ae0-4ada-8ddf-081f247adc90
relation.isAuthorOfPublicationeff7071e-e676-465b-bae3-983f522acd98
relation.isAuthorOfPublication.latestForDiscoveryeff7071e-e676-465b-bae3-983f522acd98
relation.isProjectOfPublicationa82b8cf6-bde8-4f87-99a9-9844df16a73e
relation.isProjectOfPublication.latestForDiscoverya82b8cf6-bde8-4f87-99a9-9844df16a73e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-19-05165-v2.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: