Repository logo
 
Publication

A note on Riesz fractional integrals in the limiting case alpha(x)p(x) a parts per thousand n

dc.contributor.authorSamko, Stefan
dc.date.accessioned2018-12-07T14:53:32Z
dc.date.available2018-12-07T14:53:32Z
dc.date.issued2013-06
dc.description.abstractWe show that the Riesz fractional integration operator I (alpha(center dot)) of variable order on a bounded open set in Omega aS, a"e (n) in the limiting Sobolev case is bounded from L (p(center dot))(Omega) into BMO(Omega), if p(x) satisfies the standard logcondition and alpha(x) is Holder continuous of an arbitrarily small order.
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.2478/s13540-013-0023-x
dc.identifier.issn1311-0454
dc.identifier.urihttp://hdl.handle.net/10400.1/11563
dc.language.isoeng
dc.peerreviewedyes
dc.publisherVersita
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLebesgue spaces
dc.subjectVariable exponent
dc.subjectOperators
dc.subjectConvolution
dc.titleA note on Riesz fractional integrals in the limiting case alpha(x)p(x) a parts per thousand n
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage377
oaire.citation.issue2
oaire.citation.startPage370
oaire.citation.titleFractional Calculus and Applied Analysis
oaire.citation.volume16
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
handle11563.pdf
Size:
221.57 KB
Format:
Adobe Portable Document Format