Publication
A note on Riesz fractional integrals in the limiting case alpha(x)p(x) a parts per thousand n
dc.contributor.author | Samko, Stefan | |
dc.date.accessioned | 2018-12-07T14:53:32Z | |
dc.date.available | 2018-12-07T14:53:32Z | |
dc.date.issued | 2013-06 | |
dc.description.abstract | We show that the Riesz fractional integration operator I (alpha(center dot)) of variable order on a bounded open set in Omega aS, a"e (n) in the limiting Sobolev case is bounded from L (p(center dot))(Omega) into BMO(Omega), if p(x) satisfies the standard logcondition and alpha(x) is Holder continuous of an arbitrarily small order. | |
dc.description.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.2478/s13540-013-0023-x | |
dc.identifier.issn | 1311-0454 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/11563 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Versita | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Lebesgue spaces | |
dc.subject | Variable exponent | |
dc.subject | Operators | |
dc.subject | Convolution | |
dc.title | A note on Riesz fractional integrals in the limiting case alpha(x)p(x) a parts per thousand n | |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 377 | |
oaire.citation.issue | 2 | |
oaire.citation.startPage | 370 | |
oaire.citation.title | Fractional Calculus and Applied Analysis | |
oaire.citation.volume | 16 | |
person.familyName | Samko | |
person.givenName | Stefan | |
person.identifier.orcid | 0000-0002-8022-2863 | |
person.identifier.rid | M-3726-2013 | |
person.identifier.scopus-author-id | 6603416048 | |
rcaap.rights | openAccess | |
rcaap.type | article | |
relation.isAuthorOfPublication | 7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4 | |
relation.isAuthorOfPublication.latestForDiscovery | 7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4 |
Files
Original bundle
1 - 1 of 1