Repository logo
 
Publication

Comparison of off-line and on-line performance of alternative neural network models

dc.contributor.authorLima, João
dc.contributor.authorRuano, Antonio
dc.date.accessioned2013-01-31T11:12:35Z
dc.date.available2013-01-31T11:12:35Z
dc.date.issued2000
dc.date.updated2013-01-28T09:33:55Z
dc.description.abstractThe Proportional Integral and Derivative (PID) controller is often used in industrial applications due to its functional simplicity and robust performance. Autotuning methods for these simple controllers are economically important. In order to accomplish this auto tuning in real time, without perturbing the closed-loop operation, models of criteria that are intended to be optimised are needed. In this paper, the ITAE criterion will be employed, as responses obtained with this criterion are well damped. In this paper neural networks are proposed as tools that allow these kinds of mappings. To improve the autotuner performance in a continuous operation, these models should be updated online. This way, the corresponding neural networks, after being trained off-line should be adapted on-line in real time. In the present work, the off-line and on-line performances of Multi-layer Perceptrons (MLPs), Radial Basis Function (RBFs) and Basis-Spline neural networks (B-splines), are analysed and compared.por
dc.identifier.citationLima, J. M. G.; Ruano, A. E. Comparison of off-line and on-line performance of alternative neural network models, Trabalho apresentado em Information Processing and Management of Uncertainity in Knowledge Based Systems (IPMU 2000), In Information Processing and Management of Uncertainity in Knowledge Based Systems (IPMU 2000), Madrid, 2000.por
dc.identifier.otherAUT: JLI00543; ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2159
dc.language.isoengpor
dc.peerreviewedyespor
dc.subjectOn-line learningpor
dc.subjectNeural Networkspor
dc.subjectPID autotuningpor
dc.titleComparison of off-line and on-line performance of alternative neural network modelspor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceMadridpor
oaire.citation.endPage8por
oaire.citation.startPage1por
oaire.citation.titleInformation Processing and Management of Uncertainity in Knowledge Based Systems (IPMU 2000)por
person.familyNameLima
person.familyNameRuano
person.givenNameJoão
person.givenNameAntonio
person.identifier.ciencia-idF319-672D-5416
person.identifier.orcid0000-0003-3561-4267
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublicationd96029c0-7218-497d-978c-fc61b85d1fb2
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscoveryd96029c0-7218-497d-978c-fc61b85d1fb2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
40.pdf
Size:
106.4 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: