Publication
Kelvin-Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior
dc.contributor.author | Antontsev, S. | |
dc.contributor.author | Oliveira, H. B. de | |
dc.contributor.author | Khompysh, Kh | |
dc.date.accessioned | 2021-09-08T10:58:14Z | |
dc.date.available | 2021-09-08T10:58:14Z | |
dc.date.issued | 2021 | |
dc.description.abstract | A nonlinear initial and boundary-value problem for the Kelvin-Voigt equations with anisotropic diffusion, relaxation and absorption/damping terms is considered in this work. The global and local unique solvability of the problem was established in (J. Math. Anal. Appl. 473(2) (2019) 1122-1154). In the present work, we show how all the anisotropic exponents of nonlinearity and all anisotropic coefficients should interact with the problem data for the solutions of this problem display exponential and polynomial time-decays. We also establish the conditions for the solutions of this problem to blow-up in a finite time in three different cases: problem without convection, full anisotropic problem, and the problem with isotropic relaxation. | |
dc.description.sponsorship | Russian Science Foundation, RussiaRussian Science Foundation (RSF) [19-11-00069]; Portuguese Foundation for Science and Technology, PortugalPortuguese Foundation for Science and Technology [SFRH/BSAB/135242/2017]; FCT -Fundacao para a Ciencia e a TecnologiaPortuguese Foundation for Science and Technology [UIDB/04561/2020]; Ministry of Science and Education of the Republic of Kazakhstan (MES RK), Kazakhstan [AP08052425] | |
dc.description.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.3233/ASY-201597 | |
dc.identifier.issn | 0921-7134 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/17067 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IOS PRESS | |
dc.relation | Análise de modelos mais complexos da Mecânica dos Fluídos | |
dc.relation | Center for Mathematics, Fundamental Applications and Operations Research | |
dc.subject | Kelvin-Voigt equations | |
dc.subject | Anisotropic diffusion | |
dc.subject | Anisotropic relaxation | |
dc.subject | Anisotropic damping | |
dc.subject | Large time behavior | |
dc.subject | Blow-up | |
dc.subject.other | Mathematics | |
dc.title | Kelvin-Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior | |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Análise de modelos mais complexos da Mecânica dos Fluídos | |
oaire.awardTitle | Center for Mathematics, Fundamental Applications and Operations Research | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/OE/SFRH%2FBSAB%2F135242%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04561%2F2020/PT | |
oaire.citation.endPage | 157 | |
oaire.citation.issue | 2 | |
oaire.citation.startPage | 125 | |
oaire.citation.title | Asymptotic Analysis | |
oaire.citation.volume | 121 | |
oaire.fundingStream | OE | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Borges de Oliveira | |
person.givenName | Hermenegildo | |
person.identifier.ciencia-id | 4A15-7156-6A00 | |
person.identifier.orcid | 0000-0001-9053-8442 | |
person.identifier.rid | F-3186-2014 | |
person.identifier.scopus-author-id | 7004475473 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | |
rcaap.type | article | |
relation.isAuthorOfPublication | 6f0df0e9-24bf-43d5-97b3-4a709a59e2b5 | |
relation.isAuthorOfPublication.latestForDiscovery | 6f0df0e9-24bf-43d5-97b3-4a709a59e2b5 | |
relation.isProjectOfPublication | 483d359e-b6a1-406d-892c-caeb578e2caa | |
relation.isProjectOfPublication | 0662e321-ff13-48b7-9d5f-5eaa7ee14739 | |
relation.isProjectOfPublication.latestForDiscovery | 0662e321-ff13-48b7-9d5f-5eaa7ee14739 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- antontsev2020.pdf
- Size:
- 376.27 KB
- Format:
- Adobe Portable Document Format