Repository logo
 
Publication

Neural networks based predictive control for thermal comfort and energy savings in public buildings

dc.contributor.authorFerreira, P. M.
dc.contributor.authorRuano, Antonio
dc.contributor.authorSilva, S. M.
dc.contributor.authorConceição, Eusébio
dc.date.accessioned2013-01-30T14:33:07Z
dc.date.available2013-01-30T14:33:07Z
dc.date.issued2012
dc.date.updated2013-01-26T16:18:38Z
dc.description.abstractThe paper addresses the problem of controlling a Heating Ventilation and Air Conditioning (HVAC) system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most conditions are conflicting goals requiring an optimisation method to find appropriate solutions over time. A discrete model-based predictive control methodology is applied, consisting of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and maintain thermal comfort; and the optimisation method, a discrete branch and bound approach. Each component will be described, with special emphasis on a fast and accurate computation of the PMV indices. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer and winter conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.por
dc.identifier.citationFerreira, P. M.; Ruano, A. E.; Silva, S.; Conceição, E. Z. E. Neural networks based predictive control for thermal comfort and energy savings in public buildings, Energy and Buildings, 55, 238-251, 2012.por
dc.identifier.issn03787788
dc.identifier.otherAUT: ARU00698; ECO01058;
dc.identifier.urihttp://hdl.handle.net/10400.1/2145
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.subjectHVAC predictive controlpor
dc.subjectPredicted mean votepor
dc.subjectNeural networkspor
dc.subjectMulti-objective genetic algorithmpor
dc.subjectThermal comfortpor
dc.subjectWireless sensor networkspor
dc.titleNeural networks based predictive control for thermal comfort and energy savings in public buildingspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage251por
oaire.citation.startPage238por
oaire.citation.titleEnergy and Buildingspor
oaire.citation.volume55por
person.familyNameRuano
person.familyNameConceição
person.givenNameAntonio
person.givenNameEusébio
person.identifier.ciencia-id6317-FB21-9671
person.identifier.orcid0000-0002-6308-8666
person.identifier.orcid0000-0001-5963-2107
person.identifier.ridB-4135-2008
person.identifier.ridI-7931-2015
person.identifier.scopus-author-id7004284159
person.identifier.scopus-author-id6603299150
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublicationbd0b4c3b-bd28-4e29-ab0b-1ac167828d7f
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S037877881200388X-main.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: