Publication
Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping
| dc.contributor.author | Antontsev, S. N. | |
| dc.contributor.author | de Oliveira, H. B. | |
| dc.contributor.author | Khompysh, Kh. | |
| dc.date.accessioned | 2022-07-25T12:49:55Z | |
| dc.date.available | 2022-07-25T12:49:55Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | In this work, we consider the nonlinear initial-boundary value problem posed by the Kelvin-Voigt equations for non-homogeneous and incompressible fluid flows with fully anisotropic diffusion, relaxation and damping. Moreover, we assume that the momentum equation is perturbed by a damping term which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. In the particular case of considering this problem with a linear and isotropic relaxation term, we prove the existence of global and local weak solutions for the associated initial-boundary value problem supplemented with no-slip boundary conditions. When the damping term describes a sink, we establish the conditions for the polynomial time decay or for the exponential time decay of these solutions. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.doi | 10.1007/s00030-022-00794-z | pt_PT |
| dc.identifier.eissn | 1420-9004 | |
| dc.identifier.uri | http://hdl.handle.net/10400.1/18088 | |
| dc.language.iso | por | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Springer | pt_PT |
| dc.relation | Center for Mathematics, Fundamental Applications and Operations Research | |
| dc.subject | Kelvin-Voigt equations | pt_PT |
| dc.subject | Nonhomogeneous and incompressible fluids | pt_PT |
| dc.subject | Anisotropic PDEs | pt_PT |
| dc.subject | Power-laws | pt_PT |
| dc.subject | Existence | pt_PT |
| dc.subject | Large time behavior | pt_PT |
| dc.title | Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Center for Mathematics, Fundamental Applications and Operations Research | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F04561%2F2019/PT | |
| oaire.citation.issue | 5 | pt_PT |
| oaire.citation.startPage | 60 | pt_PT |
| oaire.citation.title | Nonlinear Differential Equations and Applications NoDEA | pt_PT |
| oaire.citation.volume | 29 | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Borges de Oliveira | |
| person.givenName | Hermenegildo | |
| person.identifier.ciencia-id | 4A15-7156-6A00 | |
| person.identifier.orcid | 0000-0001-9053-8442 | |
| person.identifier.rid | F-3186-2014 | |
| person.identifier.scopus-author-id | 7004475473 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | 6f0df0e9-24bf-43d5-97b3-4a709a59e2b5 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6f0df0e9-24bf-43d5-97b3-4a709a59e2b5 | |
| relation.isProjectOfPublication | 7b62a181-c6b8-4ce3-8e22-b0e626b5b74a | |
| relation.isProjectOfPublication.latestForDiscovery | 7b62a181-c6b8-4ce3-8e22-b0e626b5b74a |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Kelvin-VoigtEquationsForIncomp.pdf
- Size:
- 912.38 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.46 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
