Repository logo
 
Loading...
Thumbnail Image
Publication

Trihedral Soergel bimodules

Use this identifier to reference this record.
Name:Description:Size:Format: 
1804.08920.pdf1.18 MBAdobe PDF Download

Advisor(s)

Abstract(s)

The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum sl(2) representation category. It also establishes a precise relation between the simple transitive 2-representations of both monoidal cate-gories, which are indexed by bicolored ADE Dynldn diagrams. Using the quantum Satake correspondence between affine A(2) Soergel bimodules and the semisimple quotient of the quantum sl(3)representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive 2-representations corresponding to tricolored generalized ADE Dynkin diagrams.

Description

Keywords

2-representation theory Ecke algebras Soergel bimodules Zigzag algebras Quantum groups and their fusion categories

Citation

Research Projects

Research ProjectShow more

Organizational Units

Journal Issue

Publisher

Instytut Matematyczny

CC License

Altmetrics