Name: | Description: | Size: | Format: | |
---|---|---|---|---|
709.67 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
We establish a Galois-theoretic interpretation of cohomology in semi-abelian categories: cohomology with trivial coefficients classifies central extensions, also in arbitrarily high degrees. This allows us to obtain a duality, in a certain sense, between "internal" homology and "external" cohomology in semiabelian categories. These results depend on a geometric viewpoint of the concept of a higher central extension, as well as the algebraic one in terms of commutators. (C) 2015 Elsevier Inc. All rights reserved.