Repository logo
 
Publication

Prediction of building's temperature using neural networks models

dc.contributor.authorRuano, Antonio
dc.contributor.authorCrispim, E. M.
dc.contributor.authorConceição, Eusébio
dc.contributor.authorLúcio, Maria Manuela Jacinto do Rosário
dc.date.accessioned2013-02-06T14:53:24Z
dc.date.available2013-02-06T14:53:24Z
dc.date.issued2006
dc.date.updated2013-01-26T19:01:53Z
dc.description.abstractThe use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings.por
dc.identifier.citationRuano, A. E.; Crispim, E. M.; Conceição, E. Z. E.; Lúcio, M. M. J. R. Prediction of building's temperature using neural networks models, Energy and Buildings, 38, 6, 682-694, 2006.por
dc.identifier.doihttp://dx.doi.org/10.1016/j.enbuild.2005.09.007
dc.identifier.issn03787788
dc.identifier.otherAUT: ARU00698; ECO01058;
dc.identifier.urihttp://hdl.handle.net/10400.1/2239
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.subjectTemperature predictionpor
dc.subjectNeural networkspor
dc.subjectMulti-objective genetic algorithmpor
dc.subjectRadial basis function networkspor
dc.titlePrediction of building's temperature using neural networks modelspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage694por
oaire.citation.issue6por
oaire.citation.startPage682por
oaire.citation.titleEnergy and Buildingspor
oaire.citation.volume38por
person.familyNameRuano
person.familyNameConceição
person.familyNameLúcio
person.givenNameAntonio
person.givenNameEusébio
person.givenNameMaria Manuela Jacinto do Rosário
person.identifier.ciencia-id6317-FB21-9671
person.identifier.orcid0000-0002-6308-8666
person.identifier.orcid0000-0001-5963-2107
person.identifier.orcid0000-0003-3243-3831
person.identifier.ridB-4135-2008
person.identifier.ridI-7931-2015
person.identifier.scopus-author-id7004284159
person.identifier.scopus-author-id6603299150
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublicationbd0b4c3b-bd28-4e29-ab0b-1ac167828d7f
relation.isAuthorOfPublication63ee3496-27c0-4310-8d2b-93f954cc7a66
relation.isAuthorOfPublication.latestForDiscovery63ee3496-27c0-4310-8d2b-93f954cc7a66

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ruano 2006.pdf
Size:
611.29 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: